Necrobacillose bij het rund, een term die meer betekent dan je denkt

Necrobacillose is een verzamelnaam voor infecties die gepaard gaan met necrose. Deze aandoening kan bij dieren overal in het lichaam plaatsvinden. De veroorzaker hiervan draagt de naam Fusobacterium necrophorum. De meest voorkomende aandoening die deze bacterie bij koeien veroorzaakt zijn leverabcessen. Klauwproblemen in koeien en schapen, oropharyngeale abcessen (difterie) bij kalveren en endometritis in koeien komen ook veelvuldig voor en worden meestal veroorzaakt door gemengde infecties van F. necrophorum en andere pathogene bacteriën (1, 2, 3, 4).

Fusobacterium necrophorum

Fusobacterium necrophorum is een gram negatieve, niet beweeglijke en niet sporevormende anaërobe kiem die zeer pleomorf is. De kiem is facultatief pathogeen en behoort tot de normale flora van het spijsverteringstelsel en ademhalingsstelsel bij koeien. Een typische eigenschap is dat deze bacterie de mogelijkheid heeft om propionzuur uit melkzuur te produceren.

Van Fusobacterium necrophorum zijn er 4 subspecies geïdentificeerd. De twee belangrijkste subspecies zijn F. necrophorum subspecies necrophorum (biotype A) en F. necrophorum subspecies funduliforme (biotype B). Deze twee zijn morfologisch, biologisch en biochemisch verschillend van elkaar. Het subspecies necrophorum is meer virulent en wordt frequenter geïsoleerd uit infecties dan subspecies funduliforme welke dan weer dikwijls gevonden wordt bij gemengde infecties.

Virulentiefactoren

De virulentiefactoren betrokken bij de pathogenese van Fusobacterium necrophorum zijn leukotoxine, endotoxisch lipopolysaccharide (LPS), hemolysine, hemaglutinine, adhesines of pili en verschillende extracellulaire enzymen met inbegrip van proteasen en deoxyribonucleasen. Al deze virulentiefactoren dragen bij tot de intrede, kolonisatie, proliferatie van het organisme én de ontwikkeling van laesies.

In onderstaande tabel vindt u een overzicht van de verschillende virulentiefactoren van Fusobacterium necrophorum.

Factoren Karakteristieken Werkingsmechanismen Rol in de infectie
Leukotoxine Extracellulair eiwit Cytotoxisch voor neutrofielen, macrofagen, hepatocyten en epitheliale cellen van herkauwers
  • Beschermt tegen de fagocytose door neutrofielen en Kupffer cellen;
  • Veroorzaakt schade aan het parenchym van de lever door vrijstelling van cytolytische stoffen.
Endotoxine Celwand component, lipopolysaccharide (LPS) Heeft een necrotisch effect en veroorzaakt diffusie intravasale stolling (DIS)
  • Creëert een anaeroob milieu en bevordert zo de anaerobe groei.
Hemolysine Extracellulair, maar cel geassocieerd eiwit Veroorzaakt lyse van erythrocyten
  • Helpt in het verwerven van ijzer, wat werkt als stimulator bij bacteriële groei;
  • Creëert een anaeroob micro-milieu.
Hemagglutinine Waarschijnlijk een eiwit celwand geassocieerd eiwit Agglutineert erythrocyten
  • Bevordert de vasthechting aan ruminaleepitheelcellen en hepatocyten bij herkauwers.
Adhesine Extracellulair, waarschijnlijk een eiwit Hecht zich vast aan de celwand van eukaryoten
  • Helpt bij kolonisatie van de huid of het ruminaal epitheel.
Dermonecrotisch toxine Celwand geassocieerd eiwit Veroorzaakt necrose in het epitheel
  • Helpt in de penetratie van het ruminaal epitheel of van de huid bij herkauwers.
Trombocyten aggregatie factor Celwand geassocieerd eiwit Breekt celeiwit af
  • Creëert een anaeroob milieu;
  • Bevordert de fibrineneerslag;
  • Beschermt de bacterie.
Protease Extracellulair proteïne Breekt celeiwit af
  • Vergemakkelijkt de penetratie van het ruminaal epitheel of van de huid herkauwers.

Het potente leukotoxine met hoog moleculair gewicht wordt gezien als één van de belangrijkste virulentiefactoren betrokken bij Fusobacterium infecties in dieren. Het is cytotoxisch voor neutrofielen, macrofagen, hepatocyten en waarschijnlijk ook voor de pens epitheelcellen van herkauwers. Het toxine induceert bij een lage concentratie apoptose, bij een hogere concentratie veroorzaakt het lyse van de cellen. Deze cytotoxiciteit is actiever tegen polymorfonucleaire cellen dan tegen lymfocyten.

Dat leukotoxine heel toxisch is voor de polymorfonucleaire leukocyten van herkauwers blijkt uit een cytotoxiciteit studie uitgevoerd binnen verschillende diersoorten. In deze studie werd aangetoond dat het F. necrophorum leukotoxine hoog toxisch is voor leukocyten van rund en schaap, matig toxisch voor deze van paarden en laag toxisch voor leucocyten van varkens en konijnen.

De mogelijkheid van dit leukotoxine om het immuunsysteem van koeien te beïnvloeden vertegenwoordigt een potentieel belangrijk mechanisme in de pathogenese van de kiem.

Het leukotoxine van F. necrophorum is aanzienlijk omvangrijker (336,000 Da) dan leukotoxines geproduceerd door andere bacteriën zoals Mannheimia hemolytica (104,000 Da) en Staphylococcus aureus (38,000 en 32,000 Da).

Fusobacterium necrophorum infecties in koeien

De betekenis van Fusobacterium necrophorum infecties in koeien wordt hieronder nader toegelicht.

Bacillaire levernecrose en leverabcessen

In het slachthuis worden in de levers vaak ronde, gele vast aanvoelende haarden /abcessen gevonden. Het gaat hier om een necrotiserende hepatitis veroorzaakt door de primaire veroorzaker Fusobacterium necrophorum. Maar ook nog andere anaërobe, facultatieve pathogenen als Bacteroides spp, Clostridium spp, Peptostreptococcus spp en Trueperella pyogenes werden al geïsoleerd uit leverabcessen.

Pathogenese

Leverabcessen zijn vaak secundair aan ruminitis en pensacidose bij dieren die gevoederd worden met veel krachtvoer. Het juiste mechanisme hierachter is nog niet geheel opgehelderd, maar men gaat er vanuit dat de snelle fermentatie van het krachtvoer zorgt voor een verhoogde synthese van vluchtige vetzuren en lactaat. Dit resulteert in pensacidose. De geïnduceerde ruminitis, samen met eventueel schade aan het epitheel door vreemde voorwerpen (zie tabel), kan helpen bij de invasie van Fusobacterium necrophorum. Langs deze weg kan de bacterie een abces veroorzaken in de penswand of verder koloniseren naar het bloed om zo in de portale circulatie terecht te komen, om dan gecapteerd te worden in de lever met een infectie als gevolg. Dit proces gaat niet zonder slag of stoot. Immers de zuurstofrijke omgeving in de lever en het hoog immunogeen karakter van dit orgaan, beschermd door massa’s fagocyten, zijn voor de facultatieve anaeroben geen ideaal milieu. De verschillende virulentiefactoren vermeld in de tabel spelen elk een rol in de pathogenese. Zo beschermen het leukotoxine en het endotoxisch LPS de kiem tegen fagocytose. De cytolytische stoffen vrijgekomen ten gevolge van de vernietiging van de fagocyten zorgen voor een negatieve invloed op het parenchym van de lever. Daarbij zorgen de intravasculaire coagulatie door LPS en trombocyten aggregatie factor, de vorming van fibrinekapsels en het gebrekkig zuurstoftransport ervoor dat de bacterie kan overleven in de penswand en de lever.

Bacteriën geïsoleerd uit leverabcessen uit gedode koeien uit het slachthuis overgenomen uit Purvis 2006.

Leverabcessen bij koeien
Bacteriën Acidosis en ruminitis (n=28) Reticuloperitonitis (n= 29)
Fusobacterium necrophorum 20 29
Subspecies necrophorum 13 26
Subspecies funduliforme 8 9
Trueperella pyogenes 15 11
Clostridium perfringens 5 2

 

In een recente studie werd ook Salmonella enterica geïsoleerd uit de leverabcessen. Een verklaarbare theorie hiervoor zou zijn dat de Salmonella aanwezig in de darm, de darmbarrière zou passeren ter hoogte van de dunne of dikke darm en zo via de lymfeknopen tot in de portale circulatie komt om daar gefiltreerd te worden door het portaal capillair systeem om dan zo infectie te veroorzaken. Verdere studies zullen het belang van deze kiem in het veroorzaken van leverabcessen nog moeten aantonen.

Als complicatie van de leveraantasting kan de vena cava aangetast worden, met flebitis en thromboflebitis als gevolg. Geïnfecteerde thrombi kunnen loslaten en zo pneumonie en longbloedingen veroorzaken.

Incidentie

Alhoewel het voorkomen van leverabcessen in de eerste plaats een probleem geeft in de vleesindustrie kampen ook melkkoeien soms met het probleem. Leverabcessen komen vrij vaak voor; de laatste jaren werd er wereldwijd een incidentie van 10 tot 20 % gezien.

De incidentie is natuurlijk gerelateerd aan bepaalde factoren zoals het dieet, ras, geslacht, geografische locatie en het seizoen.

Symptomen

De symptomen zijn niet zeer specifiek: algemeen ziek, koorts, diarree of obstipatie en natuurlijk leverfunctiestoornissen.

Diagnose

Een goede diagnose kan alleen postmortaal of door het nemen van een leverbiopt gesteld worden.

Therapie

In eerste plaats dient het voedermanagement aangepast te worden om pensontsteking en acidose te voorkomen. Langdurige antibioticumtherapie met procaïne benzylpenicilline geeft een matig resultaat. In Amerika wordt er in de feedlots veelvuldig gevaccineerd hiertegen met een sterke daling van het aantal leverabcessen als gevolg.

Klauwaandoeningen: Panaritium

Panaritium, ook tussenklauwontsteking, interdigitale necrobacillose, kleipoot, slakkepoot of tussenklauwflegmoon genoemd, is een ontsteking van het weefsel van de tussenklauwspleet.

Pathogenese

Tussenklauwontsteking ontstaat altijd door een beschadiging, een wondje door bijvoorbeeld steentjes, zaagselsplinters of slechte loopvlakken. De ontsteking zelf ontstaat door de aanwezigheid van necrose veroorzakende bacteriën: door deze bacteriën sterft het weefsel af. Fusobacterium necrophorum is de meest geïsoleerde kiem bij panaritium, maar ook andere strikt anaërobe bacteriën zoals voornamelijk Trueperella pyogenes, Bacteroides melaninogenicus, Peptostreptococcus spp en minder frequent Bacteroides fragilis worden aangetroffen.

Necrophorum en T. pyogenes zijn synergistische kiemen die producten vormen die elkaars groei gunstig kunnen beïnvloeden. Deze twee bacteriën vormen ook exotoxines die necrose veroorzaken en zo de vaatwanden ter hoogte van de ondervoet kunnen beschadigen. Hierdoor treedt vocht naar buiten met zwelling tot gevolg. Het gevaar bestaat dat de infectie zich uitbreidt naar peesscheden, pezen, gewrichtskapsels, gewrichtsbanden en gewrichten ter hoogte van de ondervoet. Uitzaaiingen via de bloedbaan naar andere weefsels en organen kunnen voorkomen.

Symptomen

Dieren met interdigitale necrobacillose vertonen acute claudicatie en hoge koorts. Zonder behandeling kunnen de diepere weefsels van de ondervoet worden aangetast. Evacuatie van necrotisch materiaal gebeurt door fistelvorming aan de kroonrand of in de tussenklauwspleet.

Behandeling

Bij panaritium is het van groot belang om de koe snel te behandelen om de vorming van een tyloom en het nog verder naar binnen slaan van de ontsteking te voorkomen. Indien men heeft vastgesteld dat het om tussenklauwontsteking gaat, is het parenteraal behandelen met antibiotica (procaïnebenzylpenicilline, oxytetracycline of tylosine) noodzakelijk. Dopharma heeft in haar assortiment Oxymax® 100 mg/ml, een product dat onder andere is geregistreerd voor de behandeling van panaritium door Fusobacterium necrophorum. Ook is het bevorderlijk om de harde hoornranden in de tussenklauwspleet te verwijderen en oxytetracyclinespray op de wond in de tussenklauwspleet te spuiten.

Een gunstig stalklimaat, schone, degelijke loopvlakken (geen kans op beschadigingen van buitenaf) en regelmatig gebruik van voetbaden helpt tussenklauwontsteking te voorkomen..

Klauwaandoeningen: Stinkpoot

Stinkpoot begint als een infectie van de tussenklauwhuid en geeft in een later stadium groeven en kloven in het hoorn van het balgebied. De naam stinkpoot komt van de stank die deze aandoening veroorzaakt. De klauwaandoening stinkpoot staat ook wel bekend als dermatitis interdigitalis.

Pathogenese

De oorzaak van deze aandoening is een bacteriële infectie van Dichelobacter nodosus en Fusobacterium necrophorum. Uitgesproken gevallen van stinkpoot worden vooral gezien bij oudere melkkoeien die langdurig binnen gehuisvest zijn. Een slechte hygiëne en een slecht, vochtig stalklimaat geven de bacteriën de kans om de klauwen aan te tasten. Dit is te voorkomen door de stal goed te ventileren en door op de roosters gebruik te maken van een mestschuif. Hierdoor blijven de klauwen droger en harder, waardoor ze minder gevoelig zijn voor infecties.

Symptomen

De symptomen van stinkpoot zijn afhankelijk van de fase waarin de aandoening zich bevindt. Stinkpoot begint als een oppervlakkige ontsteking van de tussenklauwhuid, met name in het balgebied. Het is vochtig en het stinkt. De koe heeft nog nergens last van en loopt ook niet kreupel. In de volgende fase wordt de balhoorn aangetast. In deze fase ontstaan ook kloven en hoornmisvormingen. Als laatste treedt de hoornvorming op de voorgrond. Dit gebeurt met name bij de achterbuitenklauw. Op den duur kunnen complicaties optreden. Tylomen zijn hier een goed voorbeeld. De kloven in het balgebied bieden de veroorzakers van Mortellaro dan weer de kans om aan te slaan.

Behandeling

Stinkpoot wordt in de eerste plaats behandeld door de klauw te bekappen. Overtollig hoorn wordt hierbij weggesneden, daarna worden koeien meestal door een voetbad gestuurd.

De beste preventieve maatregelen zijn een goede hygiëne en regelmatig bekappen.

Orale necrobacillose

Deze aandoening komt voornamelijk voor bij kalveren jonger dan één maand. Het betreft hier aan aantasting van het wangslijmvlies en van de tong.

Symptomen

De dieren vertonen verminderde eetlust en speekselvloei, de tongpunt steekt uit de bek en het voedsel blijft stagneren in de wang. Bij inspectie in de bek is het slijmvlies geelgrauw van kleur en stinkt.

Necrotische laryngitis/kalverdifterie

Zoals eerder vermeld is Fusobacterium necrophorum ook een van de meest geïsoleerde anaërobe kiemen uit abcessen in luchtweginfecties. Laryngitis of necrobacillose van de laynx is een acute tot chronische infectie van de laryngeale mucosa en van het arytenoid kraakbeen. Op sommige bedrijven is deze infectie enzoötisch aanwezig (Belgisch witblauw).

Pathogenese

De opname van de kiem gebeurt oraal of via inhalatie. De kiem is niet in staat de intacte mucosa te penetreren. Kleine wonden, de zo genaamde contactulcera, fungeren als intredepoort en zorgen er zo voor zorgen dat de kiem in diepere weefsels kan doordringen en een necrotiserende infectie kan veroorzaken. Deze contactulcera kunnen ontstaan ten gevolge van infecties van de luchtwegen en kan veroorzaakt worden door zowel virussen als bacteriën. Ook het veelvuldig hoesten en het veelvuldig slikken bij een luchtweginfectie zorgen voor beschadigingen, erosies en ulceraties van de gezwollen larynxmucosa.

Op bedrijven met een slechte huisvesting wordt de ziekte het vaakst opgemerkt. Slechte ventilatie, hoge vochtigheidsgraad, overbezetting en onhygiënische omstandigheden zorgen ervoor dat de bacterie meer kans heeft om het dier te infecteren. Daarnaast zijn een gebrek aan vitamine A (hyperkeratose en meerlagig verhoornd epitheel ) en irriterende gassen predisponerende factoren voor het ontstaan van contactulcera.

Symptomen

De symptomen kunnen een acuut karakter vertonen. Echter, soms treden de ziekteverschijnselen progressief of intermitterend op. Vaak begint het met hoest, eventueel met een bilaterale neusuitvloeiing.

Het meest typische symptoom is de inspiratoire stridor door de ontsteking en de necrose ter hoogte van de larynx en de daarmee gepaard gaande zwelling. Wanneer de stridor erg toeneemt, wordt ook de dyspneu erger. Soms met sterfte door verstikking als gevolg.

Wanneer de larynx wordt onderzocht dan vindt men zwelling, necrose en granulatieweefsel op de arytenoiden

Ook verminderde beweeglijkheid van de arytenoiden en een vernauwing van de glottis wordt heel dikwijls opgemerkt.

Bij langdurige bacteriële laryngitis kunnen eveneens chronische tympanie en longabcessen voorkomen.

Diagnose

Meestal wordt de diagnose gesteld aan de hand van de symptomen, maar endoscopisch onderzoek kan duidelijkheid geven.

Bacteriologisch onderzoek kan door de kiemen te enten op bloedagar; stalen moeten zo snel mogelijk geënt worden en gedurende meerdere dagen geïncubeerd worden onder anaërobe omstandigheden.

Behandeling

Medicamenteuze behandeling met een eerste keus antibiotica (procaïnebenzylpenicilline, oxytetracycline of tylosine ) en NSAID’s worden in eerste instantie geadviseerd. Dopharma heeft in haar assortiment Oxymax® 100 mg/ml, een product die onder andere is geregistreerd voor de behandeling van necrobacillose. Wanneer dit niet helpt dan kan een operatie het lijden verhelpen.

Endometritis

Ook bij endometritis speelt Fusobacterium necrophorum een rol, al is het maar een ondergeschikte rol.

Meerdere bacteriën worden als veroorzakers gezien in deze aandoening. In een review over de risicofactoren van klinische en subklinische endometritis in koeien zijn Escherichia coli en Trueperella pyogenes aangetoond als de meest frequent geïsoleerde bacteriën uit het uteruslumen bij koeien met uterusinfecties, gevolgd door anaërobe bacteriën zoals Provetella spp, Fusobacterium necrophorum en Fusobacterium nucleatum. Hieronder een overzicht van de belangrijkste veroorzakers van uteriene problemen.

Pathogenen Potentiële pathogenen Opportunistische pathogenen
Trueperella pyogenes Bacillus licheniformis Clostridium perfringens
Bacteroides spp Enterococcus faecalis Klebsiella pneumoniae
Prevotella melaninogenicus Mannheimia haemolytica Micrococcus spp
Escherichia coli Pasteurella multocida Proteus spp
Fusobacterium necrophorum Peptostreptococcus spp Staphylococcus spp, coagulase –negative α-hemolytic streptococci
Staphylococcus aureus Streptococcus acidominimus
Steptococci, nonhemolytic Aspergillus spp

 

Endometritis is een multifactorieel probleem met veel intrinsieke en extrinsieke factoren die meespelen in het ontstaan ervan. Door de ondergeschikte rol van Fusobacterium necrophorum in het metritis-endometritisprobleem wordt deze ziekte niet behandeld in dit artikel.

Zoönose

Humaan veroorzaakt Fusobacterium een zere keel en tonsillitis in jonge volwassenen, wat in bepaalde omstandigheden kan leiden tot een complicatie genoemd het syndroom van Lemierre (Kupalli et al, 2012). De Fusobacterium stam die deze ziekte veroorzaakt is verschillend van deze bij koeien en lijkt meer op de subspecies funduliforme.

Dopharma producten

Dopharma heeft ook enkele producten in het assortiment die ingezet kunnen worden bij de behandeling van luchtweginfecties, klauwproblemen en metritis.

Fusobacterium necrophorum

veroorzaker van:

Luchtweginfecties Difterie Klauwproblemen Metritis
Dofatrim-ject®

x

x

Oxyject 10%

x

x

Oxy LA INJ

x

Oxymax® 100 mg/ml

x

x

Penstrep-ject®

x

x

Sulfadimidine-Na

x

Tildosin® 300 mg/ml

x

TMP/SMZ INJ.

x

Referenties

  1. Fusobacterium necrophorum Leukotoxin Induces Activation and Apoptosis of Bovine Leukocytes† – S. Narayanan, 2002.
  2. Fusobacterium necrophorum: its characteristics and role as an animal pathogen – Langeworth, B.F., 1977.
  3. Necrobacillosis associated with Fusobacterium necrophorum – Nagaraja T.G., 1998
  4. Liver abscesses in feedlot cattle – Nagaraja, T. G., et al, 1998.
  5. Fusobacterium necrophorum infections: virulence factors, pathogenic mechanism, and control measures – Tan, Z. L. et al, 1996.
  6. Fusobacterium necrophorum infections in animals: Pathogenesis and pathogenic mechanisms – T.G. Nagaraja et al, 2005.
  7. Bacterial complications of postpartum uterine involution in cattle – Földi et al, 2006.
  8. Effect of postpartum manual examination of the vagina on uterine bacterial contamination in cows – Sheldon et al, 2002.
  9. Defining postpartum uterine disease in cattle – Sheldon et al, 2006.
  10. Mechanisms of infertility associated with clinical and subclinical endometritis in high producing dairy cattle – Sheldon et al, 2009.
  11. Risk factors of clinical and subclinical endometritis in cattle – Adnane et al, 2017.
  12. Leukotoxins of Gram-negative bacteria – Narayannan SK et al, 2002.
  13. Liver abscesses in cattle: A review of incidence in Holsteins and bacteriology and vaccine approaches to control in feedlot cattle – R.G. Amachawadi et al, 2016.
  14. Fusobacterium necrophorum :A ruminal bacteria that invades liver to cause abscesses in cattle – Tadepalli et al, 2008.

Bronvermeldingen

  1. Leverabces
  2. Panaritium
  3. Stinkpoot
  4. Difterie: Lien Van Damme, UGent (2015-2016)Overlevingsstatistieken van runderen na chirurgische behandeling van laryngeale necrobacillose.
  5. Endometritis

Doxycycline als oplossing bij varkens?

Eerste publicatie: 15 april 2020
Update: 9 april 2024

Gebruik van doxycycline

Doxycycline wordt relatief veel gebruikt voor de behandeling van respiratoire infecties bij varkens. Het is breed werkzaam, bekend in gebruik en normaal gesproken goed beschikbaar. Is het echter altijd de beste keuze en wat is bij beperkte beschikbaarheid het beste alternatief?

Beschikbaarheid van doxycycline

Op dit moment merken wij dat door beperkte productie in China, doxycycline moeilijker verkrijgbaar is dan normaal. Tegelijkertijd zien we door deze minder goede beschikbaarheid de prijs van de grondstof en het eindproduct stijgen. De afgelopen weken hebben we daarom regelmatig vragen ontvangen welke werkzame stoffen en producten als alternatief bij varkens gebruikt kunnen worden. In dit artikel hebben wij een overzicht gemaakt van de producten die als alternatief kunnen dienen voor de behandeling van bacteriële luchtweginfecties bij varkens.

Assortiment van Dopharma

De belangrijkste infecties die (conform SPC) met Doxylin® 100% behandeld kunnen worden zijn infecties met Pasteurella multocida, Bordetella bronchiseptica en Actinobacillus pleuropneumoniae. Tetracycylines zijn in het algemeen ook werkzaam tegen Mycoplasmata. In de SPC van Doxylin 100% wordt M. hyorhinis vernoemd. Hieronder ziet u een selectie van de bij Dopharma beschikbare producten voor drinkwatermedicatie die bij respiratoire infecties bij varkens gebruikt mogen worden.

Tabel 1 - assortiment Dopharma met geregistreerde indicaties wat betreft respiratoire infecties bij het varken

 

 

 

 

Belangrijke eigenschappen per product

Oxytetracycline HCl is een wateroplosbaar poeder en bevat 100% oxytetracyclinehydrochloride. Oxytetracycline behoort net als doxycycline tot de tetracyclines. Het werkingsspectrum en –mechanisme zijn dan ook vergelijkbaar. De farmacokinetische eigenschappen van oxytetracycline zijn echter minder gunstig dan die van doxycycline wat betreft respiratoire infecties: door de lagere vetoplosbaarheid van oxytetracycline wordt er een minder hoge concentratie in longweefsel bereikt.
De beschikbaarheid van oxytetracycline is op dit moment net als doxycycline beperkt en lijkt daarom geen goed alternatief voor doxycycline.

Amoxy Active® 697 mg/g is een wateroplosbaar poeder dat 80% amoxicilline trihydraat bevat (dit komt overeen met 69,7% amoxicilline). Amoxicilline is een aminopenicilline en interfereert met de bacteriële celwandsynthese. Hierdoor heeft het een bactericide werking. Amoxy Active 697 mg/g is o.a. geïndiceerd voor de behandeling van luchtweginfecties door gevoelige micro-organismen. Omdat penicillines de celwand als target hebben zijn ze echter niet werkzaam tegen Mycoplasmata. Ook de behandeling van Bordetella bronchiseptica infecties is meestal niet effectief omdat Bordetella’s vaak lactamasen produceren die penicllines enzymatisch afbreken. Amoxicilline werkt dus minder breed dan de tetracyclines. Belangrijk is ook dat amoxicilline in Nederland een tweede keus middel is.

T.S.-Sol® (20/80) is een orale oplossing en bevat opgeteld 10% trimethoprim en sulfamethoxazol. Het product T.S.-Sol® 20/100 bevat 12% van dezelfde werkzame stoffen. Trimethoprim en sulfonamiden werken synergistisch en remmen de bacteriële DNA-synthese. De combinatie van werkzame stoffen heeft een bactericide activiteit. De goede oplosbaarheid van deze producten is niet voor de hand liggend omdat beide werkzame stoffen slecht oplosbaar zijn en ook nog bij verschillende pH’s hun optimale oplosbaarheid in water vertonen. Vanwege de specifieke formulering worden beide Dopharma-producten echter al jarenlang succesvol ingezet als drinkwatermedicatie. Over het algemeen zijn deze producten zeer effectief voor de behandeling van pleuropneumonie.

Tylogran® 1000 mg/g is ook een wateroplosbaar poeder en bevat 100% tylosine tartraat. Tylosine behoort tot de macroliden en remt ook de eiwitsynthese. De opname vanuit de darm en de verspreiding naar de weefsels is goed. Het werkingsspectrum (vooral Gram positief en Mycoplasmata) en de geregistreerde luchtwegindicaties zijn smal vergeleken met doxycycline.

Tilmicosine als goed alternatief voor doxycycline

Tildosin® 250 mg/ml is een orale oplossing. Dit product bevat 25% tilmicosine en deze werkzame stof behoort ook tot de macroliden. Tilmicosine wordt na orale toediening goed opgenomen en verspreidt zich snel naar weefsels met een lage pH. Zes uur na de start van de behandeling worden er al tilmicosine concentraties in de longen gevonden. Het is bekend dat tilmicosine zich concentreert in alveolaire macrofagen van het varken1. Behalve een goede oplosbaarheid en goede farmacokinetische eigenschappen voor de behandeling van luchtweginfecties heeft tilmicosine nog enkele bijzondere voordelen:

  • In de alveolaire macrofagen wordt de vermeerdering van PRRS-virus geremd2,3.
  • Tilmicosine heeft anti-inflammatoire eigenschappen waardoor de heftige ontstekingsreactie, die bij bacteriële luchtweginfecties vaak ontstaat, wordt verminderd4.
  • Tilmicosine heeft een belangrijk Post Antibiotisch Effect (PAE): na het stoppen van de behandeling blijft er gedurende twee dagen een effectieve concentratie aanwezig in serum en longen5.

Al met al bevat Tildosin® 250 mg/ml een interessant molecuul voor de behandeling van bacteriële luchtweginfecties bij het varken. Het is hiermee een zeer geschikt alternatief voor de behandeling met doxycycline. Ook in het Formularium6 van de WVAB heeft tilmicosine vaak de voorkeur boven andere eerste keus middelen.

Tabel 2 - Eerste en tweede keus antimicrobiële middelen per indicatie bij respiratoire infecties bij varkens volgens het formularium

Discussie

Is doxycycline de beste keuze voor de behandeling van luchtweginfecties bij varkens? Ondanks dat doxycycline zeer waardevol is als diergeneesmiddel in de tool-box van de dierenarts is het antwoord nee. Ook tilmicosine, wat een zeer goed alternatief is voor doxycycline, is niet bij voorbaat de beste keuze voor elke behandeling. Het is Good Veterinary Practice om iedere casus apart te bekijken en te handelen naargelang de bedrijfsspecifieke omstandigheden.

Prudent use van antibiotica betekent zowel een verantwoord gebruik als het rationeel gebruik van deze diergeneesmiddelen. Onder verantwoord gebruik verstaan we de inzet van antibiotica alleen als het echt nodig is. Alle omstandigheden die een invloed op infecties hebben moeten geoptimaliseerd worden. Denk hierbij aan voeding, huisvesting, management, biosecurity maar ook aan het preventief gebruik van vaccins en supplementen op risicomomenten. Rationele toepassing van antibiotica betekent de inzet van de meest geschikte werkzame stof of zelfs het meest geschikte product voor elke casus. Het begint hierbij met een juiste diagnose. Doordat er het afgelopen decennium veel aandacht is geweest voor verantwoord antibioticumgebruik, heeft de sector een enorme reductie kunnen bewerkstelligen. Dit heeft tot gevolg gehad dat veel bedrijven “schoner” zijn geworden en dat mono-infecties van bacteriën meer voorkomen dan vroeger. Hierdoor is niet altijd een breed werkzaam antibioticum automatisch de beste keuze. Met behulp van een juiste diagnose, kennis van farmacodynamiek & farmacokinetiek en kennis van de antibioticagevoeligheid van te bestrijden bacteriën kan zo het diergeneesmiddel gekozen worden waarvan de beste effectiviteit verwacht kan worden. Dit helpt in verdere reductie van antibioticagebruik en kan zelfs het risico op resistentieontwikkeling verminderen. Ook de praktische toepasbaarheid van een product is een belangrijke overweging: oplosbaarheid, stabiliteit en specifieke toepassing (bijvoorbeeld continue dosering of puls-dosering) zijn bij drinkwatermedicatie zeer belangrijk. De bedrijfsspecifieke omstandigheden kunnen tenslotte mede bepalen of een bepaald product of een bepaalde toedieningsweg geschikt is voor het bedrijf.

Dopharma is er zich van bewust dat u als dierenarts een brede keuze moet hebben om antibiotica rationeel voor te kunnen schrijven. In het huidige klimaat van druk op antibiotica en steeds strengere productie-eisen, is het echter niet vanzelfsprekend om als veterinair farmaceutisch producent een breed assortiment in stand te houden of het antimicrobiële assortiment zelfs uit te breiden. U kunt er echter op rekenen dat wij als marktleider op dit gebied ons meer dan 100% inzetten om dit toch te bewerkstelligen.

Indien u advies wilt over de inzet van het meest geschikte antibioticum voor uw casus kunt u uiteraard contact opnemen met de specialisten van Dopharma.

Referenties (naast de SPC’s van de besproken producten)

1. Scorneaux B & Shryock TR. Intracellular accumulation, subcellular distribution and efflux of tilmicosin in swine phagocytes. J. vet. Pharmacol. Therap. 1998;21:257-268
2. Du Y et al. Antiviral activity of tilmicosin for type 1 and type 2 porcine reproductive and respiratory syndrome virus in cultured porcine alveolar macrophages. J Antivir Antiretrovir. 2011;3(3):28-33
3. Lin C-N et al. Tilmicosin reduces PRRSV loads in pigs in vivo. J Agricult Sci. 2016; 8(1):154-162
4. Paradis MA et al. PulmotilTM in piglets infected with Actinobacillus pleuropneumoniae: effects on apoptosis, leukotriene B4, and inflammation of the lung. Proceedings of the 18th IPVS; 2004 jun 27-jul 1; Hamburg, Germany
5. Karankolova M et al. Efficacy of an alternative Tilmovet® treatment scheme in pigs. Proceedings of the 23th IPVS; 2014 Jun 8-11; Cancun, Mexico
6. Van Duijkeren et al. Formularium varken. Houten: WVAB van de KNMvD; 2019. Beschikbaar via: https://www.knmvd.nl/app/uploads/sites/4/2019/09/formularium-varken_230919.pdf

Voorkom oplosbaarheidsproblemen die ontstaan door een te lage concentratie van het diergeneesmiddel

Het goed oplossen van drinkwatermediatie is essentieel voor de effectiviteit van het diergeneesmiddel. Problemen met de oplosbaarheid kunnen verschillende oorzaken hebben. Hieronder bespreken we oplosbaarheidsproblemen die ontstaan door een te lage concentratie. U krijgt meer informatie over de oorzaak van dit probleem en er worden oplossingen geboden.

 

 

De drinkwaterdosering wordt steeds vaker berekend op basis van de dosering in milligram per kilogram lichaamsgewicht en de dagelijkse drinkwateropname. Dit is een positieve trend, omdat deze methode veel betrouwbaarder is dan een vaste dosering per liter drinkwater. Bij specifieke diergroepen kan deze manier van doseren echter leiden tot oplosbaarheidsproblemen.

Waarom ontstaan deze problemen?

Problemen kunnen ontstaan omdat bepaalde dieren relatief veel drinken. Een voorbeeld hiervan zijn jonge kuikens. De medicatie wordt dan opgelost in een relatief grote hoeveelheid water, waardoor de concentratie in de voor- en eindoplossing laag is. Deze concentratie kan belangrijk zijn voor de oplosbaarheid omdat deze bepalend is voor de pH van de oplossing en de meeste diergeneesmiddelen enkel oplossen bij een hoge of bij een lage pH.

Wat zijn risicovolle producten?

In de praktijk komen problemen vooral voor bij producten die oplossen in een basisch milieu. Enkele voorbeelden hiervan zijn:

  • Toltrazuril (Dozuril® 25 mg/ml)
  • Enrofloxacine
  • Flumequine (Enterflume® kalf/kip, Enterflume® varken)
  • Amoxicilline (Amoxy Active® 131 mg/g, Amoxy Active® 697 mg/g)
  • Trimethoprim en Sulfamethoxazol (T.S.-Sol®, T.S.-Sol® 20/100)

Problemen door een lage concentratie kunnen echter ook ontstaan bij producten die oplossen in een zuur milieu. De belangrijkste groep in deze categorie zijn de tetracyclines, met bijvoorbeeld doxycycline (Doxylin®) en oxytetracycline.

Wat doet Dopharma om deze problemen te voorkomen?

Indien mogelijk past Dopharma de pH van het product aan, bijvoorbeeld door het gebruik van pH-corrigerende hulpstoffen. Verdunnen van het product tot een te lage concentratie zorgt er echter voor dat de pH van de vooroplossing onder de kritische pH-grens komt. Dit komt omdat de concentratie van hulpstoffen dan te laag wordt. Oplosbaarheidsproblemen kunnen dan alsnog optreden.

Daarnaast biedt Dopharma waterconditioneringsmiddelen die de pH van de oplossing corrigeren. Als deze producten correct worden toegepast, verbetert de oplosbaarheid. Voor de producten die in een basisch milieu oplossen bieden we Metasol® of Dozuril®-verdunner aan. Dozuril®-verdunner bevat natriumhydroxide om de pH te verhogen en EDTA om kationen (calcium, magnesium) te binden. Daardoor kunnen deze geen complex vormen met het diergeneesmiddel. Metasol® bevat natriumcarbonaat, wat ook een pH verhogende stof is. Daarnaast bevat het ook bestanddelen die het water ontharden.

Voor tetracyclines en andere diergeneesmiddelen die oplossen in een zuur milieu kunt u WpH corrector (citroenzuur) gebruiken. Dit verlaagt de pH en vangt de kationen weg. De benodigde concentraties van waterconditioneringsmiddelen zijn afhankelijk van het diergeneesmiddel en de eigenschappen van het water.

Wat kunt u als dierenarts of veehouder doen om deze problemen te voorkomen?

U kunt natuurlijk gebruikmaken van de waterconditioneringsmiddelen, maar er zijn ook andere maatregelen die u kunt nemen. De kwaliteit van het drinkwater speelt namelijk een belangrijke rol bij het optreden van oplosbaarheidsproblemen. Bronwater kan een afwijkende samenstelling, hardheid of pH hebben. Dit vergroot de kans op het uitzakken van deeltjes. Ook kan verontreiniging door vervuilde leidingen of emmers of het gebruik van onafgedekte oplossingen leiden tot het neerslaan van diergeneesmiddelen. U kunt de volgende maatregelen nemen:

  1. Gebruik uitsluitend leidingwater wanneer de dieren gemedicineerd worden.
  2. Gebruik uitsluitend schone materialen om diergeneesmiddelen op te lossen.
  3. Zorg ervoor dat de drinkwaterleidingen altijd schoon zijn voordat de behandeling begint.
  4. Stel indien mogelijk het doseerapparaat zo in dat de concentratie diergeneesmiddel in de vooroplossing niet te laag hoeft te worden. Door het lager instellen van het doseerapparaat heeft u namelijk minder water nodig om de vooroplossing te maken.
  5. Pas pulsdosering toe wanneer de situatie dit toelaat. Dit betekent dat u het diergeneesmiddel niet continu toedient, maar gedurende een deel van de dag. Deze maatregel is echter alleen geschikt voor diergeneesmiddelen waarvan het niet noodzakelijk is dat gedurende lange perioden een effectieve plasmaspiegel wordt bereikt. Voor antibiotica zijn dit middelen met een concentratieafhankelijke werking zoals fluoroquinolen (enrofloxacine, flumequine).

Als richtlijn bij het voorkomen van oplosbaarheidsproblemen kunt u voor de vooroplossing de minimale concentraties aanhouden zoals weergegeven in de tabel.

Product Minimale concentratie in de vooroplossing
Enterflume® 100 gram / 10 L water
Amoxy Active® 131 mg/g 500 gram / 10 L water
T.S.-Sol® 2 L / 10 L water*

*bij T.S.Sol® is het echter ook belangrijk om geen concentraties te gebruiken die veel hoger zijn dan 2 liter per 10L vooroplossing (1000 liter water), omdat hoge concentraties een nadelige invloed kunnen hebben op de smaak en daarmee op de drinkwateropname.

Het is belangrijk dat u zich bij alle maatregelen realiseert dat een toediening die niet overeenkomt met de SPC, geldt als off-label gebruik.

Contact

U kunt ons bereiken via onze contactgegevens. Voor specifieke technische vragen kunt u ook via de mail contact opnemen met het Technical Support Team via TS@Dopharma.com.

Campylobacter: een verborgen dreiging in de voedselketen

Onbekende risico’s: Campylobacter versus Salmonella

Iedereen is wel bekend met Salmonella als belangrijke voedselpathogeen in kippenvlees. Vaak zijn consumenten, maar ook dierenartsen, minder bekend met het verre neefje, Campylobacter. Verrassend, aangezien de prevalente van het geregistreerde humane campylobacteriose-gevallen in werkelijkheid meer dan dubbel zo hoog ligt als humane salmonellose-gevallen.

Omvang van de dreiging

In 2022 werden 137.107 gevallen geregistreerd door EFSA, waarbij Campylobacter de belangrijkste oorzaak is van humane gastro-enteritis en bijgevolg één van de belangrijkste zoönoses. Het werkelijk aantal zou echter nog veel hoger liggen. Voor elk geregistreerd geval zouden naar schatting rond de 46,6 niet-geregistreerde gevallen zijn (Havelaar et al., 2013), wat het werkelijk aantal in de EU op ongeveer 6,4 miljoen per jaar brengt!

De symptomen zijn gelijkaardig als bij salmonellose, namelijk diarree, buikkrampen, misselijkheid en braken. Meestal zijn deze symptomen zelflimiterend en zijn na 7 dagen de meeste symptomen verdwenen. Echter, in zeldzame gevallen kan campylobacteriosis tot ernstige complicaties leiden zoals de auto-immuunziekte Guillain-Barré. Dit brengt natuurlijk enorme maatschappelijke kosten met zich mee, welke geschat worden op € 2,4 miljard per jaar (EFSA, 2014)!

Bronnen van besmetting

Cijfers om van te duizelen; maar waar komen al die gevallen nu vandaan? De belangrijkste bron is de consumptie van pluimveevlees, verantwoordelijk voor 50-70% van alle humane besmettingen (Seliwiorstow et al., 2015). De twee belangrijkste boosdoeners hierbij zijn Campylobacter jejuni en Campylobacter coli. Deze zijn verantwoordelijke voor respectievelijk 88% en 10% van de gevallen (ECDC, 2022).

Een van de redenen waarom Campylobacter minder bekend is bij het grote publiek dan Salmonella, is dat Campylobacter zeer specifieke omstandigheden nodig heeft om te groeien. Hierdoor vermenigvuldigt Campylobacter zich niet op kippenvlees. Dit betekent dat het minder snel in verband wordt gebracht met uitbraken en vaker voorkomt in geïsoleerde gevallen. Hierdoor is Campylobacter minder nieuwswaardig en dus minder bekend bij het brede publiek.

Besmettingsroutes en verspreiding

In België blijken 35-70% en in Nederland 20-50% van de vleeskippen besmet te zijn met Campylobacter op slachtleeftijd. De bacterie behoort tot de normale microflora in de darmen en gedraagt zich als een commensaal, waarbij deze zich vooral thuis voelt in de blindedarm. Over het algemeen wordt aangenomen dat deze kiem niet schadelijk is voor kippen, hoewel er recent ook onderzoeken zijn die aantonen dat Campylobacter kan leiden tot een verhoogde voederconversie, nattere mest en pododermatitis (Humphrey et al., 2014).

Kippen kunnen op allerlei manieren besmet worden (bijv. vliegen, besmet water in de buurt van de stallen en andere boerderijdieren) en dit gebeurt bijna uitsluitend door orale opname. In de blindedarm kan Campylobacter binnen 24 uur een gigantische aantal bereiken, van 107 tot 109 per gram, waarna deze via de blindedarm-ontlasting wordt uitgescheiden in de omgeving. Met zulke hoge aantallen verspreidt de kiem zich natuurlijk razendsnel in de stal en binnen 6 dagen kan een hele stal van 30.000 vleeskuikens besmet worden (van Gerwe et al., 2005).

Merkwaardig genoeg lijkt Campylobacter de eerste 2-3 weken amper voor te komen bij vleeskippen (Newell and Fearnley, 2003). Hier zijn verschillende redenen voor, zoals:

  • verhoogde biosecurity bij jongere kuikens;
  • een immature microflora in de darm;
  • de aanwezigheid van maternale antistoffen, die worden doorgegeven van moederdier op kuiken (Sahin et al., 2003; Cawthraw and Newell, 2010; Haems et al., 2024).

De meeste besmettingen lijken voornamelijk plaats te vinden op het einde van de ronde en dan vooral na het uitladen (Hertogs et al., 2021): enkele dagen voor de meeste dieren naar de slacht gaan, wordt er al een deel van de dieren opgehaald om zo meer plaats te creëren en het oppervlak efficiënter te gebruiken. Kratten afkomstig uit het slachthuis om de dieren te transporteren zijn echter vaak niet genoeg ontsmet en op het oppervlak zijn vaak nog significante Camplobacter-aantallen aanwezig uit de vorige batch. Het binnenbrengen van deze kratten in de stal zorgt ervoor dat een groot deel van de achtergebleven dieren besmet kan worden met Campylobacter.

Eénmaal in het slachthuis kan het scheuren van de blindedarm (door bijv. verkeerde afgestelde apparatuur) tijdens de evisceratie het karkas van een kip massaal besmetten, welke op zijn beurt verschillende andere karkassen kan besmetten via kruiscontaminatie.

Hoe kan dit voorkomen worden?

Er wordt al decennia lang onderzoek gedaan naar de bestrijding van Campylobacter, maar tot zover maar met beperkt succes. Voorbeelden van geteste bestrijdingsmiddelen zijn organische zuren, bacteriofagen, probiotica, prebiotica en vaccinaties. Deze bleken na verschillende experimentele studies toch onvoldoende te werken of waren niet toepasbaar in de praktijk. Ook antibioticabehandeling is geen optie, gezien de hoge antimicrobiële resistentie terwijl men deze middelen wil voorbehouden voor het behandelen van humane campylobacteriose-gevallen.

Een geïntegreerde aanpak op 3 niveaus (primair, slachthuis en consument) is nodig om het risico op Campylobacter-besmetting zoveel mogelijk te beperken.

  • Door striktere biosecurity-maatregelen in de pluimveestal zou de prevalentie op slachtleeftijd al met 50% kunnen worden verminderd (Newell et al., 2011).
  • In het slachthuis is sinds 2018 het proces hygiëne criterium geïmplementeerd (EU 2017/1495). Hierbij is het verplicht om in elk slachthuis op wekelijkse basis routinematig 5 monsters van nekhuid te verzamelen. Als gedurende een periode van 10 weken meer dan 15 nekhuidmonsters >1000 kolonie vormende eenheden per gram Campylobacter bevatten, is het slachthuis verplicht corrigerende maatregelen te nemen om het aantal besmette karkassen te verminderen.
  • Tenslotte kunnen, wanneer het besmette kippenvlees uiteindelijk in de keuken van de consument belandt, hygiënische maatregelen worden genomen om besmetting te voorkomen, bijv. het grondig bakken van pluimvee-vlees. Dit is vooral belangrijk wanneer hele gevogeltekarkassen worden bereid of in het geval van gehakt vlees, wanneer Campylobacter niet alleen aanwezig is aan de oppervlakte. Ook wordt aanbevolen om de handen te wassen na het aanraken van producten die rauw pluimveevlees bevatten. Snijplanken kunnen dienen als potentiële dragers voor de kruisbesmetting van pathogenen van kip naar andere oppervlakken. Het is dus belangrijk om keukenoppervlakken en/of keukengerei goed te reinigen of te vervangen na gebruik bij het werken met kippenvlees.

Referenties

Cawthraw, S.A., and D.G. Newell. 2010. Investigation of the presence and protective 13 effects of maternal antibodies against Campylobacter jejuni in chickens. Avian Dis. 54:86-93.

EFSA. 2014. EFSA explains zoonotic diseases: Campylobacter.

EFSA. 2023. The European Union One Health 2022 Zoonoses Report. EFSA J. 21(12):e8842.

European Centre for Disease Prevention and Control (ECDC). 2022a. Campylobacteriosis. In: ECDC. Annual Epidemiological Report for 2021. Stockholm (SE): ECDC.

Haems, K., D. Strubbe, N. Van Rysselberghe, G. Rasschaert, A. Martel, F. Pasmans, and A. Garmyn. 2024. Role of Maternal Antibodies in the Protection of Broiler Chicks against Campylobacter Colonization in the First Weeks of Life. Animals (Basel) 4(9):1291.

Havelaar, A.H., S. Ivarsson, M. Lofdahl, and M.J. Nauta. 2013. Estimating the true incidence of campylobacteriosis and salmonellosis in the European Union, Epidemiol. Infect. 141:293-302.

Hertogs, K., M. Heyndrickx, P. Gelaude, L. De Zutter, J. Dewulf, and G. Rasschaert. 2021a. The effect of partial depopulation on Campylobacter introduction in broiler houses. Poult. Sci. 100(2):1076-1082.

Humphrey S, Chaloner G, Kemmett K, Davidson N, Williams N, Kipar A, Humphrey T, Wigley P. 2014. Campylobacter jejuni is not merely a commensal in commercial broiler chickens and affects bird welfare. mBio. ;5(4):e01364-14.

Newell, D.G and C. Fearnley. 2003. Sources of campylobacter colonization in broiler chickens. Appl. Environ. Microbiol. 69:4343–4351.

Newell D.G., K.T. Elvers, D. Dopfer, I. Hansson, P. Jones, S. James, J. Gittins, N.J. Stern, R. Davies, I. Connerton, D. Pearson, G. Salvat, and V.M. Allen. 2011. Biosecurity-based interventions and strategies to reduce Campylobacter spp. on poultry farms. Appl. Environ. Microbiol77:8605–8614.

Sahin, O., N. Luo, S. Huang, and Q. Zhang. 2003. Effect of Campylobacter-specific maternal antibodies on Campylobacter jejuni colonization in young chickens. Appl. Environ. Microbiol. 69(9):5372-9.

Van Gerwe, T.J., A. Bouma, W.F. Jacobs-Reitsma, J. van den Broek, D. Klinkenberg, J.A. Stegeman, and J.A. Heesterbeek. 2005. Quantifying transmission of Campylobacter spp. among broilers. Appl. Environ. Microbiol. 71(10):5765-70.

Bron afbeelding: https://marlerclark.com/foodborne-illnesses/campylobacter/about-campylobacter

Dophexine® 20 mg/g waardevol voor pluimvee

Tilmicosine doet meer dan je denkt

Tilmicosine is een antibioticum in de macroliden groep dat bij landbouwhuisdieren vaak wordt ingezet. In dit artikel leggen we uit waarom dit zo’n veelgebruikt molecuul is. Ook wordt informatie gegeven over de aandoening waarvoor dit product wordt ingezet, luchtwegproblemen bij kalveren.

Luchtwegproblemen bij kalveren

Het najaar en de winter zijn berucht om de problemen met zieke, hoestende kalveren. Deze luchtwegproblemen zijn het gevolg van indringers ter hoogte van de luchtwegen. De slijmlaag en trilhaartjes (eerstelijnsbescherming) werken normaliter mogelijke indringers naar buiten. Maar onder invloed van een aantal ziekteverwekkers en /of onder bepaalde omstandigheden, zoals stress of verminderde immuniteit door diarree werkt deze eerstelijnsbescherming niet voldoende. Dit kan resulteren in BRD (bovine respiratory disease). Dit ziektecomplex wordt meestal veroorzaakt door een verscheidenheid aan pathogenen, waaronder virussen (boviene respiratoire syncitieelvirus, parainfluenza-3, adenovirus, BVDV, BHV1, coronavirus), bacteriën (Pasteurella multocida, Mannheimia haemolytica, Histophilus somnus, Mycoplasma bovis), parasieten (longworm) en schimmels (Aspergillus), die, al dan niet in combinatie, kunnen leiden tot een ontsteking of allergische reactie en soms zelfs tot ernstige ziekte. Vooral jonge runderen tot één jaar oud zijn zeer gevoelig voor luchtwegproblemen. Bij deze diergroep veroorzaken luchtwegproblemen ook veel schade. Op korte termijn vanwege sterfte, behandelkosten en extra werk, maar vooral op lange termijn door groeiachterstand. Luchtwegproblemen zijn daarom een permanente bedreiging voor het inkomen van de veehouder.

Pasteurellacea

De belangrijkste bacteriële veroorzakers van longproblemen behoren tot de family Pasteurellacea. Mannheima haemolytica is zonder twijfel de belangrijkste, maar ook Pasteurella multocida en Histophilus somni worden dikwijls geïsoleerd uit monsters van zieke kalveren. Mannheimia haemolytica is een commensaal van de bovenste luchtwegen. Door allerlei stressfactoren kan de afweer van de kalveren verminderen, waardoor deze bacterie zich een weg kan banen naar de longen. Voorbeelden van zulke stressfactoren zijn verandering van voeding, weersveranderingen, hoge luchtvochtigheid, overbezetting. De bacteriële virulentiefactoren LPS en leucotoxine van Mannheimia en het geïnduceerde ontstekingsproces (infiltratie van neutrofielen) zijn verantwoordelijk voor de serieuze pathologie, weefselschade en mogelijke sterfte bij een infectie. Daarom is het van groot belang dat de ontstekingsreactie die optreedt bij een Mannheimia-infectie snel geremd wordt.

Aanpak van luchtwegproblemen

De aanpak van luchtwegaandoeningen op bedrijfsniveau moet vooral gericht zijn op preventie. Binnen die preventieve maatregelen is het in de eerste plaats nuttig om de eigen afweer van het dier te optimaliseren. Dit kan door te zorgen voor een optimaal biestmelkbeleid, een correct rantsoen en een op de bedrijfssituatie aangepast vaccinatiebeleid. Daarnaast is het ook belangrijk de omgevingsfactoren te optimaliseren. In de praktijk worden regelmatig antibacteriële middelen in gezet om de luchtweginfectie te bestrijden. De keuze van het antibioticum kan het best gemaakt worden aan de hand van een antibiogram. Daarnaast is het gebruik van ontstekingsremmers bij een luchtweginfectie zeker aan te raden.

Macroliden – tilmicosine

Tilmicosine, een antibioticum uit de macroliden groep, wordt bij landbouwhuisdieren dikwijls gebruikt om een respiratoire infectie te behandelen. En dit is niet verwonderlijk. Tilmicosine heeft naast een antibacteriële werking ook een aantal bijzondere eigenschappen, die de stof een unieke positie verlenen.

Werkingsmechanisme

Antibacteriële werking

Antibiotica uit de groep van de macroliden gaan een reversibele binding aan met de 50S subunit van het ribosoom. De 50S subunit is de grote subunit en is verantwoordelijk voor het samenvoegen van de verschillende aminozuren zodat deze één keten (peptide) vormen. Dit is voornamelijk afhankelijk van het enzym peptidyltransferase. In de aanwezigheid van macroliden worden dus alleen incomplete eiwitketens gevormd. Macroliden worden doorgaans geclassificeerd als bacteriostatisch. In sommige gevallen is het effect echter bactericide. Dit is afhankelijk van de concentratie van het antibioticum, de periode waarin de concentratie hoger is dan de MIC, de bacteriestam die behandeld wordt en de hoeveelheid bacteriën. Naast zijn activiteit tegen Gram-positieve bacteriën is tilmicosine ook actief tegen Pasteurella’s en Mycoplasma.

Post-antibiotisch effect

Het in vitro remmende effect van tilmicosine op de bacteriële eiwitsynthese houdt langer aan dan de tijd dat de concentratie van antibioticum boven de MIC is. Dit zogenaamde post-antibiotische effect (PAE) is afhankelijk van de concentratie en de duur van de blootstelling en geldt hoofdzakelijk voor Gram-positieve bacteriën. Het PAE kan tot enkele uren aanhouden en is dus klinisch relevant.

Immuno-modulerende werking

In in vitro en in vivo proeven werd aangetoond dat tilmicosine apoptose van bronchoalveolaire PMN (polymorfonucleaire neutrofiele granulocyten) en reductie van leukotriene B4 synthese in de long induceert, welke bijdragen aan de klinische werkzaamheid van tilmicosine. Tevens bevordert de PMN apoptose de fagocytische inname van PMN’s door macrofagen.

Figuur 1 Cellulaire accumulatie (ratio cellulaire ten opzichte van extracellulaire concentratie) van tilmicosine in alveolaire macrofagen (□) monocyten-macrofagen (+), mammaire epitheliale cellen ( o), en mammaire macrofagen (∆).

In alveolaire macrofagen, welke de fagocytosecellen in de longen zijn, accumuleert tilmicosine tot een buitengewoon niveau. Op vier uur tijd is de verhouding van de concentratie cellulair ten opzichte van de concentratie extracellulair 195.

Deze grote hoeveelheid antibioticum vergroot het vermogen van de fagocyt om de opgenomen bacteriën te vernietigen. De verklaring hiervoor is dat tilmicosine (base) lysosomotroop is en zich concentreert in de lysosomen van de macrofaag omwille van ion trapping. De aanwezigheid van twee aminegroepen in de structuur van tilmicosine zijn verantwoordelijk voor een hogere ionisatiegraad en opstapeling in de lysosomen. Hier onderscheidt tilmicosine zich van de andere macroliden met één aminogroep.

Farmacokinetische eigenschappen

Macroliden zijn lipofiele substanties die een zwak basisch karakter hebben. Daardoor zijn ze zeer instabiel in een zure omgeving en kunnen ze snel door middel van niet-ionische diffusie in weefsels met een lagere pH penetreren. Vooral in de long, lever, gal, nier, milt en het pleuraal en peritoneaal vocht bereiken ze hoge weefselconcentraties. Bovendien vertonen ze een zeer goede intracellulaire penetratie, voornamelijk in macrofagen. Na orale toediening aan kalveren via kunstmelk, wordt tilmicosine geabsorbeerd en gaat het snel van het serum naar zones met een lage pH. Hierdoor ontstaan zeer lage serumconcentraties, maar worden er hoge tilmicosine concentraties gevonden in het longweefsel, al zes uur na het begin van de behandeling. Bij kalveren blijft tilmicosine daar in therapeutische concentraties aanwezig tot 60 uur na de laatste toediening.

In de lever worden macroliden voor ongeveer 50% omgezet in werkzame en onwerkzame metabolieten. Excretie vindt voornamelijk plaats via de gal. Via de nieren wordt 5 – 20% van de toegediende dosis in werkzame vorm uitgescheiden.

Resistentie

Resistentie tegen macroliden kan snel ontstaan en wordt meestal door een plasmide overgedragen. Deze resistentie kan via drie verschillende mechanismen optreden:

  • Het wijzigen van de bindingsplaats op het ribosoom waardoor het macrolide niet meer kan binden op nieuw gevormde ribosomen.
  • De actieve afvoer van macroliden uit de bacteriële cel.
  • Hydrolyse van de lactonenring door esterasen.

Contra-indicaties en bijwerkingen

De veiligheidsmarge bij gebruik van tilmicosine is relatief klein. Overdosering kan leiden tot cardiotoxiciteit met mogelijke sterfte als gevolg. Het molecuul mag parenteraal alleen worden toegediend door de dierenarts.

Tildosin® 250 mg/ml – REG NL 120440

Tilmicosine kan ingezet worden op allerlei manieren. In het gamma van Dopharma hebben we Tildosin® 250 mg/ml, een oplossing voor oraal gebruik voor de doeldieren kalf, varken, kip en kalkoen. De oplossing kan worden gebruikt voor toediening in drinkwater of kalvermelk. Voor kalveren is Tildosin® 250 mg/ml geïndiceerd voor koppelbehandeling van luchtweginfecties geassocieerd met Mannheimia haemolytica, Pasteurella multocida, Mycoplasma dispar en Mycoplasma bovis.

De dosering voor kalveren is 12,5 mg tilmicosine per kg lichaamsgewicht, twee maal daags, gedurende 3 tot 5 dagen. Dit komt overeen met 1 ml product voor 20 kg lichaamsgewicht tweemaal daags gedurende 3 tot 5 dagen. De opname van gemedicineerde melk is afhankelijk van de klinische conditie van de dieren. Teneinde een juiste dosering te verkrijgen, dient de concentratie van het product in de kalvermelk dienovereenkomstig te worden aangepast. De wachttijd vlees voor kalveren is 42 dagen.

Tildosin® 300mg/ml – REG NL 105239

De injecteerbare vorm van tilmicosine, Tildosin® 300 mg/ml, kan worden ingezet bij runderen en schapen voor de behandeling van luchtwegaandoeningen geassocieerd met Mannheimia haemolytica en Pasteurella multocida. Bij schapen kan tilmicosine ook worden ingezet als behandeling van rotkreupel veroorzaakt door Dichelobacter nodosus en Fusobacterium necrophorum en voor de behandeling van acute mastitis veroorzaakt door Staphylococcus aureus en Mycoplasma agalactiae.

De dosering voor kalveren is 10 mg tilmicosine per kg lichaamsgewicht wat overeenkomt met 1 ml product per 30 kg lichaamsgewicht. De wachttijd voor vlees bedraagt 70 dagen; voor melk 36 dagen.

Omdat het injecteren van tilmicosine niet zonder risico’s is, mag Tildosin uitsluitend door de dierenarts worden toegediend.

Conclusie

Bacteriële longproblemen bij runderen moeten vlug en effectief worden aangepakt zodat blijvende schade aan de longen voorkomen wordt. Naast een aantal preventieve middelen die kunnen worden genomen en is het raadzaam om kalveren te behandelen met een werkzaam antibioticum. Het antibioticum tilmicosine onderscheidt zich van andere moleculen omdat het naast een antibacteriële werking ook immunomodulerende eigenschappen bezit.

Gelieve de SPC te raadplegen voor uitgebreide informatie over onze producten.

Referenties

  1. Alex C. Chin et al. (2000) – Tilmicosin induces apoptosis in bovine peripheral neutrophils in the presence or in the absence of Pasteurella haemolytica and promotes neutrophil phagocytosis by macrophages. – Antimicrobial agents and chemotherapy, Sept. 2000, 2465–2470.
  2. André G. Buret (2010) – Immuno-modulation and anti-inflammatory benefits of antibiotics: The example of tilmicosin – The Canadian journal for Veterinary Research, 2010; 74: 1–10.
  3. R. N. Gourlay (1989) – Effect of a new macrolide antibiotic (tilmicosin) on pneumonia experimentally induced in calves by Mycoplasma bovis and Pasteurella haemolytica – Research in Veterinary Science 1989, 47, 84-89.
  4. Bernard Scorneaux (1999) – Intracellular accumulation, subcellular distribution, and efflux of Tilmicosin in bovine mammary, blood, and lung cells – Journal of Dairy Science, July 1999.
  5. Wilson D. LEE (2004) – Tilmicosin-induced bovine neutrophil apoptosis is cell-specific and downregulates spontaneous LTB4 synthesis without increasing Fas expression – Vet. Res. 35.
  6. Gecommentarieerd geneesmiddelenrepertorium voor diergeneeskundig gebruik 2016.
  7. Giguire – Antimicrobial therapy in veterinary medicine – fourth edition.

Wachttijd, een richtlijn

Eerste publicatie: december 2013. Update maart 2023

Voor alle diergeneesmiddelen die geregistreerd zijn voor voedselproducerende diersoorten is een wachttijd bepaald. Deze wachttijd moet echter gezien worden als advies. In dit artikel leest u wat de wachttijd is en waardoor deze kan worden beïnvloed. Ook geven we enkele praktijkvoorbeelden.

Different kinds of meat, eggs and two bottles of milk --- Image by © Imagemore Co., Ltd./Corbis

Wat is een wachttijd?

Een wachttijd is de periode die na de laatste toepassing van een diergeneesmiddel ten minste moet verstrijken alvorens tot productie van levensmiddelen, afkomstig van dat dier, kan worden overgegaan. Dit heeft als doel te waarborgen dat de betreffende levensmiddelen geen residuen bevatten in grotere hoeveelheden dan de MRL (Maximale Residu Limiet). De MRL is door de EU bepaald op basis van de ADI (Acceptable Daily Intake). Als een middel op de markt komt heeft het een ADI. Deze is wereldwijd bepaald. Vervolgens wordt dan met behulp van een vooropgesteld standaard dieet bepaald wat een mens per dag maximaal mag innemen van het middel zonder dat dit een significant risico vormt voor de gezondheid: de MRL.

Voor het bepalen van de wachttijd gaat we uit van de normale gebruiksvoorwaarden bij gezonde dieren. Deze staat vermeld in de SPC. Een middel met dezelfde naam kan in andere Europese landen uitgegeven worden onder dezelfde merknaam, maar wel een andere wachttijd hebben. SPC lezen is dus belangrijk! De vastgestelde wachttijd is een minimáál te hanteren wachttijd. In specifieke situaties kan de behandelend dierenarts het noodzakelijk achten om een langere wachttijd aan te houden.

Welke factoren beïnvloeden deze wachttijd?

Er zijn verschillende factoren die van invloed kunnen zijn op de wachttijd.

  1. Ziekteverschijnselen
    Afhankelijk van het eliminatiemechanisme van een diergeneesmiddel kunnen verschillende aandoeningen een tragere eliminatie van diergeneesmiddelen tot gevolg hebben. Dit kan bijvoorbeeld optreden in het geval van lever- en/of nierfalen.
  2. Combinaties met andere diergeneesmiddelen
    De farmacokinetiek van een middel kan beïnvloed worden door andere diergeneesmiddelen welke voor, tegelijkertijd met, of na een behandeling toegediend worden. Met name wanneer twee middelen via dezelfde route gemetaboliseerd of uitgescheiden worden, kan dit leiden tot een vertraagde eliminatie.
  3. Herhaling van de behandeling
    Als een behandeling direct of na een korte tijd herhaald wordt, kan dit resulteren in stapeling van de werkzame stof in het lichaam.
  4. Het aanzuren van gemedicineerde oplossingen
    Dit kan de biologische beschikbaarheid van het diergeneesmiddel vergroten en daarmee ook de wachttijd verlengen. Alleen voor diergeneesmiddelen die van oorsprong pH verlagende stoffen zoals citroenzuur bevatten is dit berekend in de wachttijd van het geneesmiddel.
  5. Vervuiling van het drinkwatersysteem
    Vervuiling kan een mogelijke oorzaak zijn voor het achterblijven van residuen van een diergeneesmiddel in de waterleidingen. Het gebruik van zuren na een behandelperiode, kan er dan aan bijdragen dat residuen van deze diergeneesmiddelen weer in oplossing komen. Hierdoor kunnen dieren ook na het stoppen van de behandeling nog blootgesteld worden aan het diergeneesmiddel.
  6. Niet volledig leeg maken voorraadvat
    Als u een voorraadvat gebruikt, is het belangrijk deze aan het einde van de behandeling helemaal leeg te maken. Zo voorkomt u doorverdunning van de oplossing.

Cascade & off-label gebruik

Indien er sprake is van onaanvaardbaar leiden én er geen geregistreerd middel voorhanden is voor de indicatie en de betreffende diersoort, is het toegestaan een middel toe te passen volgens de cascade.

Als u een diergeneesmiddel toegepast bij een andere diersoort of voor een andere indicatie dan in de registratie vermeld staat, is in de Europese verordening 2019/6 vastgelegd welke wachttijden minimaal aangehouden moeten worden voor dierlijke producten.

Staat er in de SPC van het middel een wachttijd voor de doeldiersoort: dan dient deze wachttijd aangehouden te worden. Is dit niet het geval, dan moet tenminste een wachttijd aangehouden worden van 1,5x  de langstgenoemde wachttijd in de SPC. De diersoort is dan niet van belang. Dit geldt zowel voor vlees, melk als eieren. Als het middel niet geregistreerd is voor gebruik in voedselproducerende dieren, houdt dan minimaal 28 dagen aan voor vlees, 7 dagen voor melk en 10 dagen voor eieren. Indien de wachttijd op de SPC nul dagen is, dient u 1 dag aan te houden voor vlees en melk.

Het off-label gebruik van diergeneesmiddelen (anders dan gebruik via de “cascade”) is in principe verboden. Wettelijk is het dus niet toegestaan om een diergeneesmiddel in een andere dosering of via een andere toedieningsweg toe te dienen. Is het, in het kader van Goede Veterinaire Praktijk, toch noodzakelijk van de bijsluiter af te wijken dan kan het verstandig zijn om hierbij ook een aangepaste wachttermijn te adviseren. Deze aangepaste wachttijd is ideaal gezien onderbouwd door bijvoorbeeld bestaande wetenschappelijke literatuur. Het is dus altijd mogelijk om als dierenarts ervoor te kiezen de wachttijd te verlengen op basis van wetenschappelijke onderbouwing.

Voor meer informatie over de wetgeving omtrent cascade (ook paarden en vissen), lees ook: Diergeneesmiddelengebruik via de cascade 2022 – Dopharma.

Enkele praktijkvoorbeelden

Aanzuren van drinkwater

Zuren worden vaak gebruikt in combinatie met doxycyclinepreparaten om de oplosbaarheid te verbeteren. Doxylin® 50% WSP bevat reeds citroenzuur. Het toevoegen van extra zuur aan dit product is onder normale omstandigheden dan ook niet nodig. Aan doxycyclineproducten die geen citroenzuur bevatten wordt vaak wel een zuur toegevoegd. Zuren worden echter ook afzonderlijk van antibiotica gebruikt. Het toedienen van het zwakke zuur vitamine C, aan het einde van de mestronde, bij pluimvee is daar een bekend voorbeeld van.

Zowel het toevoegen van zuren aan de vooroplossing als het gebruik van zuren afzonderlijk van een diergeneesmiddel kan de wachttermijn beïnvloeden. Tijdens de wachttermijnberekening is er geen rekening gehouden met het aanzuren van de vooroplossing. Indien na een behandeling residuen van doxycycline in de waterleidingen zijn achtergebleven, is het mogelijk dat door gebruik van zuren later in de ronde deze neergeslagen residuen weer in oplossing komen en de dieren zodoende opnieuw aan doxycycline worden blootgesteld. Dit geldt niet alleen voor citroenzuur, maar mogelijk ook voor andere producten met een lage pH zoals vitamine C.

Behandeling met een antibioticum binnen de wachttijd van een eerder ingestelde antibioticum therapie

Regelmatig komt het voor dat een behandeling met antibiotica is ingesteld alvorens de uitslag van het antibiogram binnen is. Niet altijd kan namelijk gewacht worden met het instellen van een therapie om onaanvaardbaar leiden bij dieren te voorkomen. Wanneer bij de uitslag van het antibiogram blijkt dat de pathogeen verminderd gevoelig (resistent of intermediair) is voor de ingestelde behandeling kan gekozen worden om met een ander antibioticum te gaan behandelen waarvoor de pathogeen wel gevoelig is. Echter de wachttijd van de eerste behandeling is dan in de meeste gevallen nog niet verstreken. Dat kan ervoor zorgen dat de beide middelen elkaars eliminatie of metabolisatie beïnvloeden doordat ze bijvoorbeeld beide door de lever gemetaboliseerd of door de nieren uitgescheiden worden. Maar hoe moet je hiermee omgaan bij het bepalen van de wachttijd? Met hoeveel dagen moet de wachttijd dan verlengd worden?

Het inschatten van de juiste wachttijd is lastig. Onderzoeken naar de wachttijd van medicijnen voor de registratie van een middel worden gedaan in gezonde dieren, die niet eerder zijn behandeld met een ander middel. Gegevens over de invloed van het ene middel op het ander zijn er dus vaak niet.

Om in te schatten of het in zo’n geval noodzakelijk kan zijn om een langere wachttijd te adviseren kan men naar de farmacokinetische eigenschappen van beide middelen kijken. Denk hierbij vooral aan opstapeling in weefsels, metabolisatie en eliminatie. Als beide middelen bijvoorbeeld op dezelfde manier worden geëlimineerd dan kan de snelheid daarvan mogelijk beïnvloed worden en het adviseren van een langere wachttijd verstandig zijn. Middelen worden in ieder geval langzamer uitgescheiden in het geval van combinatietherapie of toepassing in ernstig zieke dieren. Bij een patiënt waarbij een therapie wordt ingesteld binnen de wachttijd van de vorige therapie wordt de wachttijd indien mogelijk bepaald op basis van eventueel bekende effecten op (verlengen van) wachttermijnen bij het voorgeschreven gecombineerde gebruik. Indien er geen bekende effecten zijn, is de langste wachttijd van de twee middelen in ieder geval bepalend en kan het verstandig zijn die te verlengen.

Referenties

  1. Huyghebaert, A. (2006), Advies 42-2006 (Wetenschappelijk Comité van het Federaal Agentschap voor de Veiligheid van de Voedselketen, Brussel).
  2. Nederlandse wetgeving: Wet dieren, Besluit diergeneesmiddelen en Regeling diergeneesmiddelen.
  3. Verordening (EU) 2019/6 (Verordening diergeneesmiddelen; artikelen 105 en 112 t/m 115)
  4. Richtlijn toepassing antimicrobiële middelen (2015), KNMvD, p.21

Hittestress

Tijdens warme perioden in het voorjaar en de zomer ondervinden veel dieren hittestress. Wat wordt er nu precies onder hittestress verstaan en vanaf welke temperaturen treedt hittestress op?  De antwoorden op deze vragen vindt u in dit artikel.

hittestress

Thermoregulatie

Warmbloedige dieren kunnen hun inwendige lichaamstemperatuur binnen nauwe grenzen constant houden, onafhankelijk van de omgevingstemperatuur. Dit is belangrijk om alle processen in het lichaam optimaal te laten verlopen.  Een complex thermo regulerend systeem van thermosensoren, thermo-effectoren en een thermo regulerend centrum in de hersenen maken dit mogelijk. Bij het definiëren van hittestress zijn enkele begrippen belangrijk: de comfortzone, de thermo neutrale zone en de onderste en bovenste kritische temperatuur van een dier.

Comfortzone

De comfortzone is het omgevingstemperatuurgebied waarbinnen een dier zijn lichaamstemperatuur kan handhaven enkel door vasomotie in de huid. Hierbij wordt geen extra energie verbruikt en kan het dier het meest efficiënt produceren. Bij omgevingstemperaturen beneden de comfortzone moet de warmteproductie van dier stijgen om een normale lichaamstemperatuur te behouden. Dit kan bijvoorbeeld door te rillen. Bij omgevingstemperaturen boven de comfortzone moet er óf extra warmte afgegeven worden óf minder warmte geproduceerd worden. Warme afgeven kan door hyperventilatie of zweten. Het verlagen van de warmteproductie wordt meestal bereikt door een lagere voeropname. Deze aanpassingen van het dier zullen ten koste gaan van de productie.

Thermo neutrale zone

De thermo neutrale zone is het temperatuurtraject waarbij het dier de lichaamstemperatuur nog wel constant kan houden, maar waarbij dit wel extra energie kost. De thermo neutrale zone is begrensd door de onderste en bovenste kritische temperatuur. Bij omgevingstemperaturen boven de bovenste kritische temperatuur ondervindt een dier hittestress en wordt de productie zeer sterk negatief beïnvloed.
De grenzen van de comfortzone en de thermo neutrale zone zijn van vele factoren afhankelijk o.a. van de diersoort, het ras, de leeftijd, de relatieve luchtvochtigheid, de luchtsnelheid, de voeropname, de voersamenstelling en het productieniveau. Enkele in de wetenschappelijke literatuur vermelde waarden staan in onderstaande tabel weergegeven.

Bovengrens
comfortzone
Bovenste
kritische temperatuur
Hoogproductief lacterend rundvee2,8 24 °C 24 °C
Kalf 1 dag oud25 26 °C
Kalf 1 maand oud25 23 °C
Zuigende big24,26 32 °C 33 °C
Gespeende big24,26 27 °C 33 °C
Vleesvarken 60 kg11,15 24 °C 25 °C
Vleesvarken 100 kg13,15 21 °C < 24 °C
Zeug dracht10,15,26 24 °C 26 °C
Lacterende zeug18,22 22 °C 22 °C
Leghen5 22 °C
Vleeskuiken 1 dag oud9 36 °C
Vleeskuiken5 22 °C

Gevolgen van hittestress

Hittestress kan zich uiten in verminderde productie, verminderde vruchtbaarheid en slechtere karkaskwaliteit. Andere gevolgen van hittestress zijn verhoogde oxidatieve stress, verminderde immuniteit en zelfs verhoogde uitscheiding van resistente darmbacteriën.

De gevolgen van hittestress verminderen

De gevolgen van hittestress in warme perioden verminderen kan op verschillende manieren. Heel belangrijk zijn aanpassingen van huisvesting, management en voeding. Daarnaast kunnen dieren met behulp van extra vitaminen en mineralen beter omgaan met de warmte. Vooral bij pluimvee is aangetoond dat de toediening van extra vitaminen en mineralen kan bijdragen aan behoud van productiviteit en een goede immuniteit, maar ook bij runderen en varkens is bekend dat bijvoorbeeld de plasma vitamine C concentratie daalt bij hittestress.

Hieronder worden de effecten van de toediening van vitaminen weergegeven zoals die beschreven zijn voor pluimvee.

Vitamine C

  • Verbeterde voeropname
  • Verbeterde groei
  • Verbeterde vruchtbaarheid en sperma kwaliteit
  • Daling mortaliteit
  • Verbeterde karkaskwaliteit
  • Vermindering van oxidatieve stress

Vitamine A 

  • Verbeterde eiproductie
  • Verbeterde groei, voederconversie en karkaskwaliteit
  • Hogere productie van antistoffen na vaccinatie
  • Vermindering van oxidatieve stress

Vitamine E 

  • Verbeterde eiproductie door verbeterde voeropname
  • Verbeterde karkaskwaliteit
  • Vermindering van oxidatieve stress
  • Verbetering van de immuniteit

Zink 

  • Eén van de belangrijkste componenten van het dieet bij hittestress
  • In combinatie met vitamine A verantwoordelijk voor vermindering van depressie door de hitte

Producten Dopharma

Dopharma heeft vier geregistreerde diergeneesmiddelen die bij een tekort aan vitaminen geïndiceerd zijn.

  • Vitasol C: Het enige in Nederland geregistreerde pure vitamine C product voor orale toediening.
    • Doeldieren: pluimvee, rund, varken, hond, kat, cavia.
    • REG NL 4139
  • Vitaminsol Multi: poeder voor orale toediening en bevat vitaminen en mineralen
    • Doeldieren: pluimvee, varken, kalf
    • REG NL 5606
  • Vitasol Multi: vitaminen in oplossing
    • Doeldieren: pluimvee, varken, kalf
    • REG NL: 4147

Referenties

  1. Abidin Z.and Khatoon A. (2013) Heat stress in poultry and the beneficial effects of ascorbic acid (vitamin C) supplementation during periods of heat stress. World’s poultry science journal 69: 135-152.
  2. Atrian P. and Aghdam Shahryar H. (2012) Heat stress in dairy cows (a review). Research in Zoology 2(5): 31-37
  3. Biewenga G. and Meijering A. (2003) Ruimte voor de koe: moderne huisvesting van melkvee.
  4. Burvenich C. (1997) Fysiologie van de thermoregulatie.
  5. Charles, D.R. (2002) Responses to the thermal environment. D.R. Charles. Poultry Environment Problems, A guide to solutions 1-16.
  6. Collier R.J., Collier J.L. (2012) Environmental Physiology of Livestock.
  7. Eerdenburg F.J.C.M. van and Plekkenpol S.J. (2005) Heat stress in Dutch dairy cattle during summer. ISAH Warsaw, Poland 1: 229-232.
  8. Hahn G.L. (1981) Housing and management to reduce climatic impacts on livestock. J Animal Sci 52: 175-186.
  9. Hel W. van der, Verstegen M.W.A., Henken A.M., Brandsma H.A. (1991) The Upper Critical Ambient Temperature in Neonatal Chicks. Poultry Science 70(9): 1882-1887.
  10. Holmes C.W., Close W.H. (1977) The influence of climatic variables on energy metabolism and associated aspects of productivity in pigs. Nutrition and the Climatic Environment: 51-74.
  11. Huynh T.T.T., Aarnink A.J.A., Verstegen M.W.A., Gerrits W.J.J., Heetkamp M.J.W., Kemp B., Canh T.T. (2005) Effects of increasing temperatures on physiological changes in pigs at different relative humidities. Journal of  Animal  Science 83:1385-1396.
  12. Kadzere C.T., Murphy M.R., Silanikove N., Maltz E. (2002) Heat stress in lactating dairy cows: a review. Livestock Production Science 77:  59-91.
  13. Lambooy E., Hel W. van der, Hulsegge B., Brandsma H. (1987) Effect of environmental temperature and air velocity two days preslaughtering on heat production, weight loss and meat quality in non-fed pigs. In: Energy metabolism in farm animals: effect of housing, stress and disease (ed. By M. Verstegen and A. Henken) Martinus Nijhoff, Dordrecht 164-179.
  14. Lin H., Jiao H.C.,Buyse J., Decuypere E. (2002) Strategies for preventing heat stress in poultry. World’s Poultry Science Journal 62.
  15. McFarlane J, Cunningham F. (1993) Environment: proper ventilation is key to top performance. Veterinary Scope 3(1): 6-9.
  16. Moro M.H., Beran G.W., Griffith R.W., Hoffman L.J. (2000) Effects of heat stress on the antimicrobial drug resistance of Escherichia coli of the intestinal flora of swine. Journal of Applied Microbiology 88: 836-844.
  17. Morrow-Tesch J.L., McGlone J.J., Salak-Johnson J.L.(1994) Heat and social stress effects on pig immune measures. Journal of Animal  Science 72: 2599-2609.
  18. Odehnalová S., Vinkler A., Novák P., Drábek J. (2008) The dynamics of changes in selected parameters in relation to different air temperature in the farrowing house for sows. Czech J Anim Sci 53(5): 195-203.
  19. Olivo R., Scares A.L., Ida E.L., Shimokomaki M. (2001) Dietary vitamin E inhibits poultry PSE and improves meat functional properties.  Journal of Food Biochemistry 25(4):  271–283.
  20. Padilla L. (2006) Heat stress decreases plasma vitamin C concentration in lactating cows. Livestock Science 101(1-3): 300-304.
  21. Puthpongsiriporn U., Scheideler S.E., Sell J.L., Beck M.M. (2002) Effects of Vitamin E and C Supplementation on Performance, In: Vitro Lymphocyte Proliferation, and Antioxidant Status of Laying Hens during Heat Stress. Poultry Science Association.
  22. Quiniou N., Noblet J. (1999) Influence of high ambient temperatures on performance of multiparous lactating sows. J Anim Sci 77: 2124–2134.
  23. Sahin K., Sahin N., Kucuk O., Hayirli A., Prasad A.S. (2009) Role of dietary zinc in heat-stressed poultry: A review. Poultry Science Association.
  24. Verstegen M.W.A. (1987) Swine. In: World animal science, B5: bioclimatology and the adaption of livestock (ed. By HD. Johnson) Elsevier, Amsterdam 245-258.
  25. Wathes C.M., Jones C.D.R., Webster A.J.F. (1983) Ventilation, air hygiene and animal health. Vet Rec 113:554–559.
  26. Zhang Y. (1994) Swine building ventilation: a guide for confinement swine housing in cold climates. Prairie Swine Centre Saskatoon, Canada, p144.

Coccidiose bij pluimvee

In dit artikel wordt een overzicht gegeven van de aandoening coccidiose. Naast de ziektekundige kennis en informatie over diagnostiek, therapie en preventie wordt ook het economische belang van coccidiose bij pluimvee besproken. Daarnaast worden recente ontwikkelingen besproken.

Coccidiose

Coccidiose is een reeds lang bekende aandoening, waarvoor het meeste onderzoek stamt uit de jaren zeventig. Recenter onderzoek richt zich vooral op het ontrafelen van het genoom van de Eimeria spp. en het verbeteren van vaccins [1]. Ook wordt er steeds meer onderzoek gedaan naar het gebruik van alternatieve behandelmethoden.

Coccidiose wordt veroorzaakt door verschillende Eimeria spp. Bij de kip zijn dit E. acervulina, E. maxima, E. necatrix, E. brunetti en E. tenella.
Coccidiose is de belangrijkste predisponerende factor voor dysbacteriose [2]. Economisch is deze aandoening dan ook erg belangrijk. Soms wordt het wel gezien als de economisch belangrijkste aandoening in de pluimveehouderij [3]. De kosten werden wereldwijd geschat op 750 miljoen tot meer dan 1,5 miljard US dollar [4]. In een andere studie werden de kosten zelfs op 2,3 miljard euro geschat [2]. Deze kosten worden voornamelijk veroorzaakt door subklinische coccidiose [4]. Williams heeft een berekening gemaakt voor de Engelse pluimveesector en concludeerde dat de door subklinische coccidiose veroorzaakte daling van de voederconversie en groei verantwoordelijk was voor 80,5% van de kosten. De overige kosten werden veroorzaakt door kosten voor preventie en behandeling [5].

Verschijnselen

De verschijnselen bestaan uit productiedalingen en dunne mest, eventueel met bloed. In de natte mest kunnen bacteriën en parasieten zich sneller ontwikkelen. Daarnaast neemt de ammoniakconcentratie toe, wat kan leiden tot voetzoollesies en respiratoire problemen [4]. De mortaliteit kan oplopen tot 12-15% [4]. De specifieke verschijnselen en de locatie van de lesies in de darmen zijn afhankelijk van de Eimeria species die de infectie veroorzaakt [6]. In tegenstelling tot wat vaak gedacht wordt, kunnen er ook aan het eind van de productieronde grote aantal oöcysten voorkomen die subklinische schade veroorzaken [7].

Naast de directe gevolgen van een infectie kan coccidiose ook een predisponerende factor zijn voor bacteriële infecties [4] zoals necrotische enteritis [8]. Infecties met Clostridium perfringens treden echter niet altijd op bij coccidiose infecties, hiervoor moet de infectiedruk met C. perfringens hoog genoeg zijn. Bovendien zijn er ook andere predisponerende factoren die bij het optreden van necrotische enteritis een rol kunnen spelen. Er moet nog meer onderzoek gedaan worden naar het effect van coccidiosevaccins op het voorkomen van necrotische enteritis, maar het lijkt erop dat de lesies van de subklinische coccidiose na vaccinatie niet predisponeren voor necrotische enteritis [8].

Blootstelling aan E. tenella zorgde voor een hoger aantal Salmonella enteritidis in de darmen en een verlengde uitscheiding. Dit werd gevonden bij kippen die enkele weken voor de challenge al geïnfecteerd waren met S. enteritidis. Er was echter geen duidelijk verband met de incidentie van S. enteritidis in de lever [9].

Diagnostiek

De diagnose wordt doorgaans gebaseerd op postmortaal onderzoek, eventueel in combinatie met het scoren van de lesies [2]. Er kan mestonderzoek worden gedaan waarbij een OPG (oöcysten per gram faeces) bepaald wordt [10]. Er is echter een slechte correlatie tussen de OPG en de impact van coccidiose in het koppel [2]. Ook kan een kwantitatieve PCR worden uitgevoerd op een mengmonster van de mest om te bepalen wat de infectiedruk is van de verschillende Eimeria species [10].

coccidiose-bij-pluimvee

Preventie & Behandeling

Coccidiose is een lastig te voorkomen ziekte omdat de oöcysten in alle stallen voorkomen. Daarnaast vermenigvuldigen de oöcysten zich zo snel dat één oöcyst kan zorgen voor tienduizenden nieuwe oöcysten [3].
Preventie bestaat uit vaccinatie of het toedienen van anticoccidia via het voer. Vaccinatie wordt al op zeer jonge leeftijd gedaan, omdat kuikens vanaf het uitkomen al geïnfecteerd kunnen worden met oöcysten [4]. Een nadeel van vaccinatie is dat de vaccinstammen zich vermenigvuldigen in de gastheercellen, wat betekent dat de dieren subklinische infecties doormaken [2]. Bij het vaccineren wordt een deel van de in de stal aanwezige stammen vervangen door de vaccinstammen. Dit kan als bijkomend voordeel hebben dat de gevoeligheid voor anticoccidia toeneemt [10-12].

De effectiviteit van toltrazuril als preventieve [13, 14] en curatieve behandeling [15] is aangetoond, waarbij de kippen nog steeds immuniteit opbouwden tegen coccidiose [14, 16]. Er zijn verschillende studies uitgevoerd waarbij toltrazuril vergeleken werd met andere diergeneesmiddelen.

  • Wanneer toltrazuril vergeleken werd met amprolium bleek dat toltrazuril zorgde voor een significant betere daling van het aantal oöcysten in de faeces [17].
  • Bij de behandeling van een E. tenella-infectie zorgden zowel toltrazuril als sulfachoorpyrazine voor een vermindering van de effecten van coccidiose op de mortaliteit en de groei. Er was echter wel een verschil in effectiviteit wanneer klinische lesies en faeces beoordeeld werden; toltrazuril bleek superieur wanneer de behandeling 24 uur na de infectie gestart werd terwijl sulfachloorpyrazine superieur was als de behandeling 72 uur na infectie gestart werd [18].
  • In een andere studie bleek dat zowel de behandeling met de combinatie sulfaquinoxaline en pyrimethamine als die met toltrazuril resulteerde in een daling van de mortaliteit door E. tenella. Bij de behandeling met sulfaquinoxaline en pyrimethamine werden echter nog wel enkele oöcysten gevonden, terwijl er bij de toltrazurilbehandeling geen oöcysten werden gevonden [19].
  • De effectiviteit van sulfachloorpyrazine of sulfaquinoxaline is ook vergeleken met de effectiviteit van toltrazuril bij kalkoenen die geïnfecteerd waren met E. meleagrimitis, E. adenoeides en E. gallopavonis. Kalkoenen die behandeld werden met sulfonamiden vertoonden enkele verschijnselen, terwijl kalkoenen die behandeld werden met toltrazuril vrij waren van klinische symptomen [20].

Alternatieven

In de afgelopen jaren zijn er geen nieuwe moleculen ontwikkeld voor de preventie of behandeling van coccidiose. Er wordt dan ook steeds meer onderzoek gedaan naar het effect van natuurlijke of synthetische alternatieven. De resultaten van deze proeven zijn echter vaak niet overtuigend of niet verifieerbaar.

Voedselbestanddelen en kruiden kunnen een direct effect uitoefenen door het verstoren van de ontwikkeling en vermeerdering van oöcysten. Een indirect effect kan bijvoorbeeld optreden door stimulatie van het immuunsysteem of het beïnvloeden van de darmflora en de darmmucosa [21]. De effecten die beschreven zijn in de literatuur zijn zeer wisselend en tevens sterk afhankelijk van de Eimeria spp. die werd gebruikt.

  • De beste resultaten werden verkregen met etherische oliën; in vitro studies toonden een coccidiocide effect aan [24, 25]. Echter, ook hier geldt dat niet in alle studies goede resultaten behaald werden [26, 27].
  • In een studie waarin verschillende plantenextracten zijn onderzocht, werden geen overtuigende resultaten gevonden [28]. Antioxidanten uit bepaalde plantensoorten, waaronder druiven, leverden wel goede resultaten . Met bepaalde stoffen of specifieke planten werden verschillende resultaten bereikt.
    • Absintalsem (Artemisia spp.) is een plant waarvan zowel het plantenextract als de etherische olie bescherming kan boden tegen lesies van E.tenella. Daarnaast kunnen ze zorgen voor een daling van de oöcysten van E. tenella en E. acervulina. Er was geen bescherming tegen lesies van E. maxima [30-32].
    • Extracten van de neemboom bleken een dosisafhankelijk effect te hebben op de voederconversie en mortaliteit bij E. tenella-infecties, vergelijkbaar met het effect van salinomycine [33].
    • Met coumarine zijn vergelijkbare resultaten behaald als met salinomycine; een verbetering van de productieresultaten en een daling van het aantal oöcysten en macroscopische lesies [34].
    • Het gebruik van pruimen in diervoeding kan zorgen voor een toename in cytokinen en een daling van de uitscheiding van oöcysten [35].
    • De plant Echinacea purpurea had een immunomodulerend effect en zorgde voor een daling van de coccidioselesies na een challenge met E. acervulina, E. maxima, E. tenella en E. necatrix [36].
    • Carvacrol, cinnamaldehyde, Capsicum oleoresin [37] en groene thee [38] verlaagden het aantal oöcysten.
    • Het gebruik van polysachariden uit paddenstoelen of kruiden zorgde voor een hogere IgG-concentratie en een toename van het aantal antigeen-specifieke splenocyten na een challenge met E. tenella. De concentratie IgA en IgM werd niet beïnvloed [39]. Uit een andere studie blijkt dat paddenstoelen wel zorgde voor een daling van het aantal oöcysten, maar niet van invloed was op het ontstaan van lesies [40]. Polysachariden uit tarwe hadden een immunostimulerend effect en beschermden tegen coccidiose met verschillende Eimeria spp. [41].
    • Kurkuma is een kruid dat zorgde voor minder lesies en een lagere uitscheiding van oöcysten van E. maxima. Het beïnvloedde E. tenella niet [32].
    • In een studie waarin een combinatie van kruiden is onderzocht, bleek dat er een effect was op E. tenella, maar dat dit veel minder significant was dan het effect van lasolid [42].
  • Omega-3-vetzuren kunnen zorgen voor een vermindering van lesies door E. tenella, maar niet door E. maxima. Mogelijk werd dit veroorzaakt door verschillende omstandigheden in de ceca en het middelste deel van de darm [43, 44]. Een andere verklaring is dat gesporuleerde oöcysten en sporozoïeten van E. tenella gevoeliger zijn voor oxidatieve schade [45]. Omega-3-vetzuren bleken echter niet in alle studies effectief [46].
  • Het gebruik van het prebioticum mannanoligosaccharide (MOS) leidde tot een daling van het aantal oöcysten en het voorkomen van lesies bij E. tenella-infecties. MOS had echter geen effect op E. maxima en E. acervulina [47]. Ook in een andere studie werd aangetoond dat het gebruik van MOS leidde tot een daling van de lesies bij een infectie met Eimeria spp. [27]. In andere studies werd een veel minder duidelijk effect [48] of geen effect [49] gevonden. Bij het gebruik van specifieke β-glucanen werd geen overtuigend effect gevonden [50].
    Het gebruik van hele gistcelwanden kan bijdragen aan het behoud van de integriteit van de darmwand tijdens een coccidiose-infectie [51]. Bij kuikens die gechallenged werden met Eimeria zorgde het voor een daling in het aantal oöcysten, stimulatie van het immuunsysteem en betere productieresultaten [52].
  • Lactobacillus spp. kunnen ook de lokale immuunreactie in de darm bij coccidiose verbeteren [53-55]. Probiotica met Pediococcus spp. verlaagden de oöcystconcentraties, verbeterden de antilichaamreactie en verminderden het negatieve effect op de groei [56].
  • Betaïne had een synergetisch effect wanneer gecombineerd met salinomycine [57]. Dit gold niet voor andere ionoforen [58, 59]. Uit een andere studie bleekt juist dat betaïne de pathologie verergerde, maar ook het aantal leukocyten in de darm liet toenemen. Beide effecten kunnen worden verklaard door de chemotaxis van monocyten en de afgifte van stikstofoxide (NO) door macrofagen [60].
  • Het gebruik van protease leidde niet tot verbeteringen van coccidiose verschijnselen [61].

Voedermiddelen en toevoegingsmiddelen worden niet alleen ingezet ter preventie, maar kunnen ook gebruikt worden tijdens de herstelfase [21]. Het wordt aanbevolen dit naast de reguliere behandeling te doen.

Dopharma producten

Dopharma heeft enkele diergeneesmiddelen voor de behandeling van coccidiose in het assortiment. Dozuril® 25 mg/ml is orale oplossing met toltrazuril, geregistreerd voor gebruik bij kippen. Daarnaast is sulfadimidine beschikbaar voor pluimvee. Dit is een antibioticum dat tevens werkzaam is tegen coccidiose.

Referenties

  1. Shirley, M.W. and H.S. Lillehoj, The long view: a selective review of 40 years of coccidiosis research. Avian Pathol, 2012. 41(2): p. 111-21.
  2. De Gussem, M. Coccidiosis in poultry: review on diagnosis, control, prevention and interaction with overall gut health. in 16th European Symposium on Poultry Nutrition. 2007. Strasbourg: World Poultry Science Association.
  3. Mathis, G., Keeping coccidiosis manageable, in World Poultry. 2015, Elsevier. p. 9-11.
  4. IFAH, Coccidiosis in poultry – Fact Sheet, IFAH, Editor. 2014.
  5. Williams, R.B., A compartmentalised model for the estimation of the cost of coccidiosis to the world’s chicken production industry. Int J Parasitol, 1999. 29(8): p. 1209-29.
  6. Tewari, A.K. and B.R. Maharana, Control of poultry coccidiosis: changing trends. J Parasit Dis, 2011. 35(1): p. 10-7.
  7. Severt, M.G., Ook op het eind opletten. Pluimveehouderij – Vleessector vaktechniek.
  8. Williams, R.B., Intercurrent coccidiosis and necrotic enteritis of chickens: rational, integrated disease management by maintenance of gut integrity. Avian Pathol, 2005. 34(3): p. 159-80.
  9. Qin, Z.R., et al., Eimeria tenella Infection Induces Recrudescence of Previous Salmonella enteritidis Infection in Chickens. Poultry Science, 1995. 74(11): p. 1786-1792.
  10. Ter Veen, C. and H. Peek, Puzzelen met darmgezondheid, deel 2 – Coccidiose bij vleeskuikens, in GD Pluimvee. 2013: Deventer. p. 14-15.
  11. Chapman, H.D. and T.K. Jeffers, Vaccination of chickens against coccidiosis ameliorates drug resistance in commercial poultry production. Int J Parasitol Drugs Drug Resist, 2014. 4(3): p. 214-7.
  12. Klein Swormink, B., Veldproef met weglaten coccidiostatie in voer toont aan: resistentie valt te verlagen. Pluimveehouderij 2007. 37(augustus 2007): p. 8-9.
  13. Alnassan, A.A., et al., Efficacy of early treatment with toltrazuril in prevention of coccidiosis and necrotic enteritis in chickens. Avian Pathol, 2013. 42(5): p. 482-90.
  14. Mathis, G.F., R. Froyman, and T. Kennedy, Coccidiosis control by administering toltrazuril in the drinking water for a 2-day period. Vet Parasitol, 2004. 121(1-2): p. 1-9.
  15. Schmid, H.P., et al., Use of toltrazuril in pullet breeding flocks raised on floors with anticoccidial-free feed. Dtsch Tierarztl Wochenschr, 1991. 98(4): p. 141-4.
  16. Greif, G., Immunity to coccidiosis after treatment with toltrazuril. Parasitol Res, 2000. 86(10): p. 787-90.
  17. Kandeel, M., Efficacy of amprolium and toltrazuril in chicken with subclinical infection of cecal coccidiosis. Indian Journal of Pharmacology, 2011. 43(6): p. 741-743.
  18. Laczay, P., G. Voros, and G. Semjen, Comparative studies on the efficacy of sulphachlorpyrazine and toltrazuril for the treatment of caecal coccidiosis in chickens. Int J Parasitol, 1995. 25(6): p. 753-6.
  19. Chapman, H.D., Chemotherapy of caecal coccidiosis: efficacy of toltrazuril, sulphaquinoxaline/pyrimethamine and amprolium/ethopabate, given in drinking water, against field isolates of Eimeria tenella. Res Vet Sci, 1989. 46(3): p. 419-20.
  20. Greuel, E., H.C. Mundt, and S. Cortez, [Sulfonamide and toltrazuril therapy of experimental turkey coccidiosis]. Dtsch Tierarztl Wochenschr, 1991. 98(4): p. 129-32.
  21. Peek, H., Resistance to anticoccidial drugs: alternative strategies to control coccidiosis in broilers, in Faculty Veterinary Medicine. 2010, University Utrecht.
  22. Barbour, E.K., et al., Control of eight predominant Eimeria spp. involved in economic coccidiosis of broiler chicken by a chemically characterized essential oil. J Appl Microbiol, 2015. 118(3): p. 583-91.
  23. Murakami, A.E., C. Eyng, and J. Torrent, Effects of functional oils on coccidiosis and apparent metabolizable energy in broiler chickens. Asian-Australas J Anim Sci, 2014. 27(7): p. 981-9.
  24. Remmal, A., et al., In vitro destruction of Eimeria oocysts by essential oils [Abstract]. Vet Parasitol, 2011. 182(2-4): p. 121-6.
  25. Remmal, A., et al., Oocysticidal Effect of Essential Oil Components against Chicken Eimeria Oocysts. International Journal of Veterinary Medicine: Research & Reports, 2013.
  26. Oviedo-Rondon, E.O., et al., Essential oils on mixed coccidia vaccination and infection in broilers. International Journal of Poultry Science, 2006. 5(8): p. 723-730.
  27. Bozkurt, M., et al., Efficacy of in-feed preparations of an anticoccidial, multienzyme, prebiotic, probiotic, and herbal essential oil mixture in healthy and Eimeria spp.-infected broilers. Poultry Science, 2014. 93(2): p. 389-399.
  28. Almeida, G.F., et al., The effects of combining Artemisia annua and Curcuma longa ethanolic extracts in broilers challenged with infective oocysts of Eimeria acervulina and E. maxima.Parasitology, 2014. 141(3): p. 347-55.
  29. Naidoo, V., et al., The value of plant extracts with antioxidant activity in attenuating coccidiosis in broiler chickens [Abstract]. Vet Parasitol, 2008. 153(3-4): p. 214-9.
  30. Allen, P.C., J. Lydon, and H.D. Danforth, Effects of components of Artemisia annua on coccidia infections in chickens. Poult Sci, 1997. 76(8): p. 1156-63.
  31. Arab, H.A., et al., Determination of artemisinin in Artemisia sieberi and anticoccidial effects of the plant extract in broiler chickens. Trop Anim Health Prod, 2006. 38(6): p. 497-503.
  32. Allen, P.C., H.D. Danforth, and P.C. Augustine, Dietary modulation of avian coccidiosis [Abstract]. Int J Parasitol, 1998. 28(7): p. 1131-40.
  33. Tipu, M.A., T.N. Pasha, and Z. Ali, Comparative efficacy of salinomycin sodium and neen fruit (Azadirachta Indica) as feed additive anticoccidials in broilers. International Journal of Poultry Science, 2002. 1(4): p. 91-93.
  34. Michels, M.G., et al., Anticoccidial effects of coumestans from Eclipta alba for sustainable control of Eimeria tenella parasitosis in poultry production. Vet Parasitol, 2011. 177(1-2): p. 55-60.
  35. Lee, S.H., et al., Immunomodulatory properties of dietary plum on coccidiosis. Comp Immunol Microbiol Infect Dis, 2008. 31(5): p. 389-402.
  36. Allen, P.C., Dietary supplementation with Echinacea and development of immunity to challenge infection with coccidia [Abstract]. Parasitol Res, 2003. 91(1): p. 74-8.
  37. Lillehoj, H.S., et al., Effects of dietary plant-derived phytonutrients on the genome-wide profiles and coccidiosis resistance in the broiler chickens. BMC Proc, 2011. 5 Suppl 4: p. S34.
  38. Jang, S.I., et al., Anticoccidial effect of green tea-based diets against Eimeria maxima. Vet Parasitol, 2007. 144(1-2): p. 172-5.
  39. Guo, F.C., et al., Effects of mushroom and herb polysaccharides on cellular and humoral immune responses of Eimeria tenella-infected chickens. Poult Sci, 2004. 83(7): p. 1124-32.
  40. Guo, F.C., et al., Coccidiosis immunization: effects of mushroom and herb polysaccharides on immune responses of chickens infected with Eimeria tenella. Avian Dis, 2005. 49(1): p. 70-3.
  41. Akhtar, M., et al., Studies on wheat bran Arabinoxylan for its immunostimulatory and protective effects against avian coccidiosis. Carbohydr Polym, 2012. 90(1): p. 333-9.
  42. Christaki, E., et al., Effect of a mixture of herbal extracts on broiler chickens infected with Eimeria tenella. Animal. Res., 2004. 53: p. 137-144.
  43. Allen, P.C., H.D. Danforth, and O.A. Levander, Diets High in n-3 Fatty Acids Reduce Cecal Lesion Scores in Chickens Infected with Eimeria tenella. Poultry Science, 1996. 75(2): p. 179-185.
  44. Allen, P., H. Danforth, and O. Levander, Interaction of dietary flaxseed with coccidia infections in chickens. Poultry Science, 1997. 76(6): p. 822-827.
  45. Michalski, W.P. and S.J. Prowse, Superoxide dismutases in Eimeria tenella [Abstract]. Mol Biochem Parasitol, 1991. 47(2): p. 189-95.
  46. Allen, P.C., H. Danforth, and P.A. Stitt, Effects of nutritionally balanced and stabilized flaxmeal-based diets on Eimeria tenella infections in chickens. Poultry Science, 2000. 79(4): p. 489-492.
  47. Elmusharaf, M.A., et al., The effect of an in-feed mannanoligosaccharide preparation (MOS) on a coccidiosis infection in broilers. Animal Feed Science and Technology, 2007. 134(3–4): p. 347-354.
  48. Elmusharaf, M.A., et al., Effect of a mannanoligosaccharide preparation on Eimeria tenella infection in broiler chickens. International Journal of Poultry Science, 2006. 5(6): p. 583-588.
  49. McCann, M.E.E., et al., The use of mannan-oligosaccharides and/or tannin in broiler diets. International Journal of Poultry Science, 2006. 5(9): p. 873-879.
  50. Barberis, A., et al., Effect of using an anticoccidial and a prebiotic on production performanced, immunity status and coccidiosis in broiler chickens. Asian Journal of Poultry Science, 2015.9(3): p. 133-143.
  51. Luquetti, B.C., et al., Saccharomuces Cerevisiae cell wall dietary supplementation on the performance and intestinal mucosa development and integrity of broiler chickens vaccinated against coccidiosis. Brazilian journal of poultry science, 2012. 14(2).
  52. Shanmugasundaram, R., M. Sifri, and R.K. Selvaraj, Effect of yeast cell product (CitriStim) supplementation on broiler performance and intestinal immune cell parameters during an experimental coccidial infection. Poult Sci, 2013. 92(2): p. 358-63.
  53. Sato, K., et al., Immunomodulation in gut-associated lymphoid tissue of neonatal chicks by immunobiotic diets. Poult Sci, 2009. 88(12): p. 2532-8.
  54. Dalloul, R.A., et al., Intestinal immunomodulation by vitamin A deficiency and lactobacillus-based probiotic in Eimeria acervulina-infected broiler chickens. Avian Dis, 2003. 47(4): p. 1313-20.
  55. Dalloul, R.A., et al., Enhanced mucosal immunity against Eimeria acervulina in broilers fed a Lactobacillus-based probiotic. Poult Sci, 2003. 82(1): p. 62-6.
  56. Lee, S.H., et al., Influence of Pediococcus-based probiotic on coccidiosis in broiler chickens. Poult Sci, 2007. 86(1): p. 63-6.
  57. Augustine, P.C., et al., Effect of betaine on the growth performance of chicks inoculated with mixed cultures of avian Eimeria species and on invasion and development of Eimeria tenella and Eimeria acervulina in vitro and in vivo. Poult Sci, 1997. 76(6): p. 802-9.
  58. Matthews, J.O., T.L. Ward, and L.L. Southern, Interactive effects of betaine and monensin in uninfected and Eimeria acervulina-infected chicks. Poult Sci, 1997. 76(7): p. 1014-9.
  59. Waldenstedt, L., et al., Effect of betaine supplement on broiler performance during an experimental coccidial infection. Poult Sci, 1999. 78(2): p. 182-9.
  60. Klasing, K.C., et al., Dietary betaine increases intraepithelial lymphocytes in the duodenum of coccidia-infected chicks and increases functional properties of phagocytes. J Nutr, 2002. 132(8): p. 2274-82.
  61. Peek, H.W., et al., Dietary protease can alleviate negative effects of a coccidiosis infection on production performance in broiler chickens. Animal Feed Science and Technology, 2009. 150(1–2): p. 151-159.