Wist u dat u voor de toediening van mineralen en vitaminen vaak kunt kiezen tussen een aanvullend diervoeder of een geregistreerd diergeneesmiddel?

In de praktijk blijkt dat dit niet altijd bekend is. Daarnaast blijkt het lastig om een goede keuze te maken tussen deze verschillende productgroepen. Er zijn namelijk enkele belangrijke verschillen tussen een geregistreerd diergeneesmiddel (met REG NL) en een (aanvullend) diervoeder en de manier waarop deze productgroepen ingezet kunnen worden in het veld. Deze verschillen proberen we hieronder met enkele praktische voorbeelden te verduidelijken.

Wetgeving

De wetgeving die van toepassing is voor diergeneesmiddelen, is totaal anders dan de wetgeving die van toepassing is op (aanvullende) diervoeders.

Wetgeving diergeneesmiddelen

Voor diergeneesmiddelen is de meeste informatie te vinden in het besluit en de regeling diergeneesmiddelen. Diergeneesmiddelen die uitsluitend vitaminen en/of mineralen bevatten en die zijn bedoeld voor orale toediening, hebben over het algemeen de kanalisatiestatus vrij. Deze kunnen dus ingezet worden zonder recept.

Wetgeving diervoeders

Voor diervoeders moet vooral gekeken worden naar de marktverordening (Verordening 767/2009). Vanuit deze wetgeving wordt verwezen naar tal van andere wetteksten.

Onder diervoeders vallen alle stoffen en producten (incl. additieven) die verwerkt, gedeeltelijk verwerkt of onverwerkt bestemd zijn om te worden gebruikt voor orale vervoedering aan dieren.

Er wordt onderscheid gemaakt in verschillende soorten diervoeders:

  • Volledige diervoeders: mengvoeders die door hun samenstelling toereikend zijn als dagrantsoen.
  • Aanvullende diervoeders: mengvoeders met een hoog gehalte aan bepaalde stoffen die niet geschikt zijn als dagrantsoen, maar naast een volledig diervoeder kunnen worden gebruikt.

Voor de productie van diervoeders worden voedermiddelen gebruikt, zoals maïs, granen en melkproducten. Daarnaast worden toevoegingsmiddelen gebruikt in diervoeders of drinkwater. Dit kunnen bijvoorbeeld vitaminen of mineralen zijn, maar ook stoffen die het diervoeder gunstig beïnvloeden (conserveringsmiddelen) of coccidiostatica.

De informatie over toevoegingsmiddelen staat in Verordening 1831/2003. Daarnaast is er voor de toevoegingsmiddelen (additieven) die worden gebruikt in diervoeding een register met alle producten die zijn toegelaten. Via dit register kunt u de uitvoeringsverordeningen vinden waarmee de individuele toevoegingsmiddelen zijn toegelaten. In sommige gevallen staan in deze uitvoeringsverordeningen aanvullende eisen zoals maximum gehaltes.

Als een dierenartsenpraktijk (aanvullende) diervoeders verkoopt, moet deze praktijk geregistreerd zijn conform artikel 9 van Verordening 183/2005 (met betrekking tot diervoederhygiëne). Meer informatie hierover kunt u lezen in de FAQ op onze website.

Gevolgen van wetgeving voor de praktijk

Zoals hierboven aangegeven, is de wetgeving die van toepassing is op diervoeders anders dan de wetgeving die van toepassing is op diergeneesmiddelen. Deze verschillen en wat ze betekenen voor de toediening van producten aan voedselproducerende dieren zijn samengevat in onderstaande tabel.

Tabel 1 Verschillen tussen een diergeneesmiddel, een (aanvullend) diervoeder en een toevoegingsmiddel.

Diergeneesmiddel (Aanvullend) diervoeder Toevoegingsmiddel
Wetgeving

Besluit diergeneesmiddelen

Regeling diergeneesmiddelen

Marktverordening: Verordening (EU) 767/2009 Verordening 1831/2003
Toediening aan dieren Conform SPC. De producten van Dopharma worden via het drinkwater of het voer toegediend. Via het voer of het drinkwater of rechtstreeks in de bek. Via het voer of het drinkwater, mits er geen beperking in de uitvoeringsverordening van het toevoegingsmiddel staat.
Maximum gehalte Niet van toepassing; dosering conform SPC. Maximum gehalte van toepassing indien vermeldt in uitvoeringsverordening van de toevoegingsmiddelen. Maximum gehalte van toepassing indien vermeldt in uitvoeringsverordening van de toevoegingsmiddelen.
Producten van Dopharma Copper forte
Osteosol Forte
Vitaminsol Multi
Vitasol Multi
Vitasol-C
Aminovitasol AD
Ammo-mix AD
Diavit Plus AD
Heparenol
Sedochol
Y-D-Fix®
N.v.t.

Praktijkvoorbeelden

De informatie uit bovenstaande tabel roept wellicht nog vragen op. Deze proberen we te beantwoorden door uit te leggen wat dit betekent voor het gebruik van koper

Koper als toevoegingsmiddel staat onder andere in het register als kopersulfaat pentahydraat. Voor meer informatie over dit molecuul wordt verwezen naar uitvoeringsverordening 2018/1039. In deze uitvoeringsverordening worden aanvullende eisen beschreven met betrekking tot de inzet van koper als toevoegingsmiddel in diervoeder. Deze wetgeving is sinds 13 augustus 2018 van kracht. Er waren echter wel overgangstermijnen. De toevoegingsmiddelen en premixen met deze kopermoleculen die vóór 13 februari 2019 zijn geproduceerd en geëtiketteerd mogen nog worden uitverkocht onder de oude wetgeving (van vóór 13 augustus 2018). Voor voedselproducerende dieren geldt dat voedermiddelen en (aanvullende) diervoeders geproduceerd en geëtiketteerd voor 13 augustus 2019, nog mogen worden verkocht conform de oude eisen.

Er zijn twee belangrijke wijzigingen vastgelegd in deze nieuwe wetgeving:

  • Het toevoegingsmiddel kopersulfaat (en andere kopermoleculen) mogen niet meer via drinkwater worden toegepast. Het toevoegingsmiddel moet als voormengsel verwerkt worden in een diervoeder alvorens het toegediend mag worden aan dieren. Dit is van toepassing op alle diersoorten.
  • Er gelden nieuwe maximumgehaltes, welke vooral relevant zijn voor varkens. Voor meer informatie hierover verwijzen we u naar het artikel “Nieuwe koperwetgeving vanaf 13 augustus 2019”.

De consequenties van deze verschillen zijn als voorbeeld voor koper weergegeven in onderstaande tabel.

Tabel 2 Praktische toepassing van koper en de verschillen bij toepassing in een diergeneesmiddel, een volledig of aanvullend diervoeder of als toevoegingsmiddel.

Diergeneesmiddel Volledig diervoeder Aanvullend diervoeder Toevoegingsmiddel

Toepassing conform SPC.

Er hoeft geen rekening gehouden te worden met maximum gehaltes voor diervoeders.

Maximum gehalte zoals vermeldt in uitvoeringsverordening (EU) 2018/1039

Maximum gehalte in aanvullend diervoeder is maximaal honderdmaal het maximum gehalte dat is toegestaan in diervoeder (verordening (EG) 767/2009)

Toepassing via het drinkwater is niet toegestaan: koper mag alleen verwerkt worden als voormengsel in diervoeder (uitvoeringsverordening (EU) 2018/1039)

Let op: de totale hoeveelheid koper die aan dieren wordt gegeven (volledig + aanvullend diervoeder) mag niet hoger zijn dan de maximum gehaltes vermeldt in uitvoeringsverordening (EU) 2018/1039

Zoals uit bovenstaande blijkt, is de toepassing van diergeneesmiddelen in veel gevallen eenvoudiger en dus niet gebonden aan maximum gehaltes zoals die gelden voor diervoeders.

Niet voor alle toevoegingsmiddelen worden beperkingen vastgelegd in de uitvoeringsverordeningen. Voor kopersulfaat pentahydraat zijn er dus wel beperkingen. Ook voor enkele andere mineralen die die vaak worden ingezet gelden enkele beperkingen. Deze worden weergegeven in onderstaande tabel.

Toevoegingsmiddel Toegestaan via drinkwater Maximum gehalte in diervoeders per 13 augustus 2019
IJzer (ijzerchloride hexahydraat) Nee

Schaap: 500

Rund en pluimvee: 450

Big (>1 week voor spenen): 250

Gezelschapsdieren: 600

Andere diersoorten: 750

Zink (zinkchloride) Nee

Hond en kat: 200

Zalmachtigen en kalf (melkvervanger): 180

Big, zeug, konijn en andere vissoorten: 150

Andere diersoorten: 120

Mangaan (mangaanchloride tetrahydraat) Nee

Vis: 100

Andere diersoorten: 150

Koper (koperchloride dihydraat) Nee

Rund vóór herkauwen: 15

Rund overig: 30

Schaap: 15

Geit: 35

Speenvarken en gespeende big tot 4 weken na het spenen: 150

Big > 5e week na het spenen tot max 9 weken na het spenen: 100

Schaaldieren: 50

Andere dieren: 25

Kwaliteitssysteem

Bovenstaande informatie gaat over de wetgeving die van toepassing is. Naast de geldende wetgeving, heeft u bij de verkoop van aanvullende diervoeders vaak ook te maken met kwaliteitssystemen. Voor veehouders die IKB gecertificeerd zijn, is het bijvoorbeeld verplicht om uitsluitend diervoeders te gebruiken die geleverd worden door GMP+ FSA  (Good Manufacturing practice Feed Safety Assurance) gecertificeerde bedrijven. In dit artikel gaan we hier niet verder op in, maar u kunt hierover meer informatie vinden in de FAQ op onze website.

Referenties

Uitbreiding van de indeling van Clostridium perfringens toxinotypes

Clostridium perfringens is een belangrijke bacterie voor de pluimveehouderij vanwege zijn rol bij het ontstaan van necrotische enteritis. C. perfringens stammen worden ingedeeld op basis van de toxinen die ze kunnen produceren (toxinotypering). De indeling die hiervoor wordt gebruikt is uitgebreid met twee nieuwe toxinotypes. RIPAC-LABOR gebruikt de nieuwe indeling voor diagnostiekuitslagen die u van ze ontvangt. In dit artikel wordt u geïnformeerd over de nieuwe indeling en de rol van de verschillende toxines en toxinotypes, zodat u de nieuwe uitslagen goed kunt interpreteren.

Clostridium perfringens

Clostridium perfringens is een Gram positieve sporenvormende anaerobe bacterie. C. perfringens komt als commensaal voor in de darmen, ook bij pluimvee. In de natuur is Clostridium perfringens betrokken bij de degeneratie van karkassen. Hierbij groeit de bacterie in een anaerobe omgeving. Ook in het dier groeit deze bacterie alleen in anaerobe omstandigheden. Gezonde weefsels bevatten een te hoge concentratie zuurstof, wat succesvolle groei van C. perfringens voorkomt. Necrotisch weefsel heeft echter veel lagere zuurstofgehaltes, waardoor deze bacterie hier wel kan groeien.

Ziekte wordt meestal veroorzaakt door de toxines die onder bepaalde omstandigheden (predisponerende factoren) geproduceerd kunnen worden. Het gaat hier om extracellulaire toxines; toxines die door de bacterie worden uitgescheiden. Deze toxines zorgen voor destructie van levend weefsel, waardoor C. perfringens in deze weefsels kan groeien. Dit geldt ook voor necrotische enteritis bij pluimvee.

De ziekte komt voor in een klinische en subklinische vorm. De klinische vorm wordt gekenmerkt door klinische symptomen zoals diarree en een verhoging van de mortaliteit. De mortaliteit kan zelfs oplopen tot 50%. De subklinische vorm gaat niet gepaard met klinische symptomen, maar deze vorm van necrotische enteritis is juist heel erg belangrijk door economische verliezen die ontstaan door een verminderde groei en verslechtering van de voederconversie.

Figuur 1 Kweek van Clostridium perfringens

Diagnostiek

De meeste bacteriën worden ingedeeld op basis van serotypering. Serologische typering van C. perfringens is in het verleden wel geprobeerd, maar zelfs met het gebruik van meer dan 91 sera waren veel stammen niet typeerbaar. Daarom is besloten om gebruik te maken van toxinetypering, waarbij wordt gekeken naar de aanwezigheid van de genen die coderen voor bepaalde toxines (genetische typering). Dit wordt gedaan door gebruik te maken van een multiplex PCR (Polymerase Chain Reaction). Deze PCR kan ook door RIPAC-LABOR uitgevoerd worden. Daarnaast kan er een lecithovitellinase test uitgevoerd worden. Deze test wordt later uitgelegd.

Voor het nemen van diagnostische monsters voor onderzoek op C. perfringens is het belangrijk om de monsters direct na het doden van de dieren te nemen. Als er te lang gewacht wordt met monstername, zal overgroei door andere bacteriën zeer waarschijnlijk plaatsvinden. Daarnaast is het belangrijk om de bacterie onder anaerobe omstandigheden te vervoeren, zodat deze het transport overleeft.

Toxinen

Door het enorme belang van toxines bij de pathogenese van aandoeningen veroorzaakt door C. perfringens, is er al vroeg onderzoek gedaan naar de voorkomende toxines. Al in 1941 werd aangetoond dat het α-toxine een fosfolipase C is dat geproduceerd wordt door alle C. perfringens stammen. Het was het eerste bacteriële toxine waarvan werd aangetoond dat het werkzaam was als een enzym.

Ook voor de andere toxines is tegenwoordig duidelijk welke effecten ze hebben op de gastheercellen. Voor pluimvee zijn twee van de toxines die worden gebruikt voor de classificering van C. perfringens van belang: het α-toxine en NetB toxine. Daarnaast is het TpeL toxine bij pluimvee van klinisch belang, ook al wordt het niet gebruikt voor de classificatie. De eigenschappen van deze vier toxines worden daarom hieronder toegelicht.

α-toxine

Het α-toxine is zoals hierboven genoemd een fosfolipase C enzym (CpPLC). Dit enzym bindt aan het celmembraan via calcium-bindingsplaatsen en kan dan rechtstreeks reageren met de fosfolipiden in de celmembraan. Het beïnvloedt op deze manier de mucosa van het jejunum in kippen en draagt zo bij aan de pathogenese van necrotische enteritis. Het is echter niet de belangrijkste virulentiefactor voor het ontstaan van necrotische enteritis.

Dit toxine wordt gevonden op het cpa gen dat aanwezig is op het chromosoom van alle C. perfringens stammen. De hoeveelheid toxine die wordt geproduceerd varieert echter tussen stammen; stammen met toxinotype A produceren de grootste hoeveelheden α-toxine.

Omdat het α-toxine het meest voorkomende toxine is, is het niet voldoende om aan te tonen dat het gen dat codeert voor dit toxine aanwezig is. De aanwezigheid van een toxine geeft namelijk alleen maar aan dat een bacterie in staat is om een bepaald toxine te vormen. Hiermee wordt niet bepaald dat het toxine ook daadwerkelijk gevormd wordt. RIPAC-LABOR biedt daarom een lecithovitellinase test aan. Met deze test kan de hoeveelheid actief toxine worden aangetoond. Het voordeel boven een ELISA is dat er wordt gekeken naar de activiteit van de aanwezige toxines. De ELISA is niet in staat om deze activiteit te bepalen.

NetB toxine

NetB (Necrotic Enteritis Toxin B-like) is ook een porie-vormend toxine. Dit toxine maakt een hydrofiele porie met een diameter van 1,6 – 1,8 nm in het plasmamembraan, waardoor ionen kunnen passeren. Kippencellen die worden blootgesteld aan het NetB toxine vertonen snel ‘blebbing’ en zwelling, en zullen uiteindelijk lyseren en dus sterven. Blebbing is het eerste stadium van celdood, waarbij uitstulpingen ontstaan. Dit is een indicatie van het verlies van het cytoskelet en dit zal leiden tot celdood.

Hoe meer NetB toxine door een stam wordt geproduceerd, hoe erger de laesies zijn die door deze stam worden veroorzaakt. Het NetB toxine is het belangrijkste toxine dat gerelateerd wordt aan necrotische enteritis bij kippen.

TpeL toxine

Het TpeL toxine is een groot glucosylerend toxine. Dit toxine is homoloog aan de TcdA en TcdB toxines van C. difficile.

TpeL speelt waarschijnlijk ook een rol bij het ontstaan van necrotische enteritis; experimentele infecties met TpeL positieve stammen in vleeskuikens resulteren in ernstigere darmlaesies en veroorzaken necrotische enteritis met een sneller verloop en hogere mortaliteit dan infecties met stammen zonder het TpeL toxine.

Plasmiden

Veel van de genen die coderen voor toxines, zoals het cpb gen (b-toxine), etx gen (e-toxine), iap gen (ɩ-toxine) en netB gen liggen op grote plasmiden in de bacterie. Deze plasmiden worden soms overgedragen van de ene naar de andere C. perfringens stam. Overdracht van een plasmide met genetische informatie voor het e-toxine van toxinotype D naar toxinotype A stammen is bijvoorbeeld aangetoond. De stammen die de plasmide met het etx gen ontvingen veranderden daardoor dus ook van toxinotype A naar toxinotype D. Ook overdracht van het NetB toxine van de ene naar de andere stam is aangetoond, zelfs in het maagdarmkanaal van kippen.

De indeling van een stam in een bepaald toxinotype is dus niet definitief; tijdens de groei van een stam in de aanwezigheid van andere C. perfringens stammen kan deze stam andere genetische informatie.

Toxinotype indeling

Wilsdon heeft een schema opgesteld voor de indeling van C. perfringens op basis van het voorkomen van genetisch materiaal dat codeert voor toxines. Dit schema was in het verleden al drie keer eerder aangepast, maar is nu voor de vierde keer gewijzigd. Er worden twee toxinotypes toegevoegd, waaronder het voor pluimvee relevante toxinotype G.

Over een nieuwe indeling van C. perfringens stammen wordt al jaren gesproken. Tijdens de “10Th International Conference on the Molecular Biology and Pathogenesis of the Clostridia” dat in Ann Arbor (USA) werd gehouden in augustus 2017 is men tot een consensus gekomen, dat in 2018 door Rood et al werd gepubliceerd. In Tabel 1 wordt een overzicht gegeven van de nieuwe indeling, inclusief de nieuwe toxinotypes.

Tabel 1 Nieuwe toxinotype indeling van C. perfringens

Toxine α-toxine b-toxine e-toxine ɩ-toxine CPE NetB
Gen plc / cpa cpb etx iap cpe netB
Toxinotype A +
Toxinotype B + + +
Toxinotype C + + ±
Toxinotype D + + ±
Toxinotype E + + ±
Toxinotype F + +
Toxinotype G + +

Toxinotype F

C. perfringens type F stammen zijn stammen die genen bezitten voor het α- en CPE-toxine, maar niet voor de b-, e- of ɩ-toxines.
Tot nu toe werden deze stammen vaak geclassificeerd als CPE-positieve type A stammen.

Dit toxinotype is vooral humaan van belang.

Toxinotype G

C. perfringens type G stammen zijn stammen die genen bezitten voor de productie van het α- en NetB toxine. Ze hebben niet het genetische materiaal voor de productie van b-, e- of ɩ-toxines.
Deze stammen werden voorheen geclassificeerd als NetB positieve type A stammen.

Dat het NetB toxine van belang is voor de pathogenese van necrotische enteritis, is natuurlijk geen nieuws. In 2008 werd het belang van NetB in de pathogenese van necrotische enteritis bij pluimvee al aangetoond door Keyburn et al. Het toxine kon echter pas in het schema worden opgenomen nadat meer onderzoek was gedaan. Het moet namelijk worden vastgesteld dat het om een uniek toxine gaat dat gerelateerd is aan een aandoening (door het vervullen van de postulaten van Koch of uitgebreide epidemiologische analyses). Daarna moet dit door een breed gedragen groep wetenschappers worden geaccepteerd.

Toxinotype A

Het toevoegen van de nieuwe toxinotypes betekent ook voor toxinotype A een wijziging: C. perfringens stammen worden nu alleen nog maar ingedeeld in dit toxinotype als ze niet de genen hebben voor de productie van CPE of NetB toxines.

Ziektebeelden

De verschillende toxinotypes zijn ieder verantwoordelijk voor hun eigen veterinaire en/of humane ziektebeelden. Hieronder wordt een overzicht gegeven van de belangrijkste aandoeningen veroorzaakt door de verschillende toxinotypes.

  • Type A: primair veroorzaker van gasgangreen (infecties van de spieren door wonden) humaan, maar ook veroorzaker van necrotiserende enterocolitis in biggen, enterotoxemie bij kalveren, hemorragische enteritis bij honden en typhlocolitis bij paarden.
  • Type B: veroorzaker van dysenterie bij lammeren.
  • Type C: veroorzaker van hemorragische tot necrotiserende enteritis bij neonatale biggen en peracute sterfte (struck) bij schapen.
  • Type D: veroorzaker van enterotoxemie (pulpy kidney disease) bij schapen.
  • Type E: veroorzaker van enteritis bij konijnen en incidenteel van hemorragische enteritis bij kalveren.
  • Type F: veroorzaker van humane voedselvergiftiging en diarree na het gebruik van antibiotica.
  • Type G: veroorzaker van necrotische enteritis bij kippen.

Is deze indeling definitief?

C. perfringens kan minstens twintig verschillende extracellulaire toxines en hydrolytische enzymen produceren. Veel van deze factoren worden dus nog niet gebruikt voor de classificatie, omdat ze op dit moment nog niet voldoen aan de criteria die worden gebruikt. Nieuw onderzoek naar enkele van deze toxines leidt mogelijk in de toekomst tot het opnemen van die toxines in het schema. Het schema wordt mogelijk op een later moment dus opnieuw aangepast.

Toxines die misschien nog toegevoegd gaan worden zijn het NetF en BED (of CPILE) toxine. Het NetF toxine wordt vooral gevonden bij stammen die hemorragische enteritis veroorzaakt bij honden en necrotiserende enteritis bij veulens. Het BED toxine wordt geassocieerd met voedsel gerelateerde gastro-enteritis humaan. Voor pluimvee zijn er op dit moment nog geen nieuwe toxines die wellicht van invloed zijn op de indeling van C. perfringens stammen.

Referenties

  1. Flores-Diaz, M., Barquero-Calvo, E., Ramírez, M., Alape-Girón, A. (2016) Role of Clostridium perfringens toxins in necrotic enteritis in poultry. In Microbial toxins page 1-16. Springer Science + Business Media.
  2. Keyburn, A.L., Boyce, J.D., Vaz, P., Bannam, T.L., Ford, M.E., Parker, D., Di Rubbo, A., Rood, J.I., Moore, R.J. (2008) NetB, a new toxin that is associated with avian necrotic enteritis caused by Clostridium perfringens. PloS Pathog. 4(2): e26.
  3. Opengaart, K. (2008) Necrotic enteritis. In Saif, Y.M. Diseases of Poultry 12th edition (2008). Blackwell publishing. Page 872-879.
  4. Quin, P.J., Markey, B.K., Carter, M.E., Donnely, W.J., Leonard, F.C. (2002) Veterinary microbiology and microbial disease. Blackwell publishing. Chapter 16 Clostridium species, page 84-96.
  5. Rood, J.I., Adams, V., Lacey, J., Lyras, D., McClane, B.A., Melville, S.B., Moore, R.J., Popoff, M.R., Sarker, M.R., Songer, J.G., Uzal, F.A., van Immerseel, F. (2018) Expansion of the Clostridium perfringens toxin-based typing scheme. Anaerobe 53: 5-10.
  6. Uzal, F.A., Vidal, J.E., McClane, B.A., Gurjar, A.A. (2007) Clostridium perfringens toxins involved in mammalian veterinary diseases. Open toxinology J. 2: 24-42.

Dit artikel is mede tot stand gekomen met de hulp van RIPAC-LABOR.

 

Distocur; u wilt toch ook uw melkvee tegen leverbot behandelen tijdens lactatie en droogstand?

Bedrijven die aan weidegang doen of vers gras voeren, kunnen vroeg of laat te maken krijgen met leverbot. Leverbot wint steeds meer terrein in West-Europa. Ook in Nederland en België worden steeds meer besmettingen gemeld. Sterfte door leverbot komt in runderen bijna niet voor. Maar is deze ziekte daarom minder belangrijk?

Leverbot

Leverbotinfectie of distomatose is een parasitaire ziekte bij herkauwers die veroorzaakt wordt door trematoden of platwormen. De grote leverbot die voorkomt in onze contreien draagt de naam Fasciola hepatica. Deze ziekte veroorzaakt wereldwijd belangrijke economische verliezen. De verliezen bestaan voor het grootste deel uit melkproductiedaling, gewichtsverlies en afgekeurde levers in het slachthuis. Daarnaast kan een infectie met leverbot het effect van andere ziekteverwekkers versterken of verminderen of interfereren met hun diagnose (zie verder in deze tekst). Wat wel eens vergeten wordt, is dat deze parasiet ook problemen kan geven bij andere graseters en ook bij de mens.

Leverbot – prevalentie en risicofactoren

Waar vroeger leverbotinfecties alleen maar voorkwamen in meer zuidelijke gelegen landen zien we de laatste jaren dat leverbotinfestaties ook bij ons meer en meer voorkomen. Veranderde klimatologische omstandigheden (mildere winters, hoge temperaturen en meer neerslag) zorgen ervoor dat de omstandigheden voor de ontwikkeling van de leverbot verbeteren. Daarnaast zorgen de veranderende weersomstandigheden er ook voor dat de periode met gevaar voor besmetting met leverbot steeds vroeger in het weideseizoen begint. Maar er zijn nog andere risicofactoren die de uitbreiding van leverbot op een bedrijf in de hand werken. Uit een studie uitgevoerd in Denemarken bleek dat vaarzen en droge koeien die grazen op natte weiden significante risicofactoren zijn om de infectie met leverbot op het bedrijf in stand te houden. Ook de aankoop van besmette koeien, geen of slechte behandeling van besmet jongvee en te weinig controle op al dan niet voorkomen van resistentie mogen niet vergeten genoemd te worden. Zo kan resistentie tegen triclabendazol ervoor zorgen dat leverbotinfecties gestaag uitbreiden.

Leverbot – levenscyclus

De leverbot heeft een indirecte cyclus, waarin de poelslak Galba truncatula als tussengastheer een belangrijke rol speelt. De aanwezigheid van deze poelslak is noodzakelijk om de cyclus van de leverbot te vervolledigen.

In de lever legt de volwassen leverbot eitjes die, samen met de gal, in de mest van het rund worden uitgescheiden. Een volwassen leverbot kan per dag wel 4.000 tot 7.000 eieren produceren. In de buitenwereld komen uit de eitjes trilhaarlarven of miracidiumlarven. Deze miracidiumlarven hebben binnen de 24 uur een poelslak nodig om te kunnen overleven. In de slak ontwikkelen de larven verder tot staartlarven. Deze larven verlaten de slak en komen zo in de weide terecht. Na het verliezen van zijn staart kapselt de larve zich in tot een besmettelijke cyste (metacercaria). Bij het opeten van de cysten via het gras raken graseters besmet. Binnen enkele uren na opname ontstaan juveniele leverbotjes in de dunne darm. Deze botjes boren zich door de darmwand en migreren door de buikholte richting lever en galgangen.
In het rund loopt de levensduur van een leverbot uiteen van 6 maanden tot twee jaar.

Leverbot levenscyclus

Figuur 1 De leverbotcyclus in het rund met tussengastheer Galba truncatula (bron: DGZ – Ugent)

Leverbot – symptomen

Door de migratie van de parasiet in de lever en de beschadigingen die daar worden aangebracht kan er een hele waaier aan symptomen ontstaan. Deze kunnen gaan van verminderde melkproductie, gewichtsverlies, verminderde fertiliteit, diarree tot sterfte.
Bij rundvee is een infectie meestal subklinisch en dus sluimerend, met economische consequenties tot gevolg. Bij schapen kan het vooral bij jonge dieren aanleiding geven tot acute sterfte.

Leverbot – diagnose

De diagnose van leverbot kan op verschillende manieren worden gesteld. Niet elke methode is op elk moment van de infectie relevant.

Mestonderzoek

Met mestonderzoek (sedimentatie-flotatie) kan het aantal eieren uitgescheiden door volwassen wormen worden aangetoond. De mest (rectaal genomen) wordt microscopisch onderzocht op de aanwezigheid van leverboteieren. De aanwezigheid van eieren van de parasiet is niet alleszeggend en kan ook niet op elk tijdstip worden uitgevoerd. Zo is er in de prepatente periode geen uitscheiding van eieren door de immature stadia. Daarbij staat het aantal eieren gevonden in de faeces niet altijd in relatie met het aantal adulte parasieten in de lever. Na het opnemen van een metacercaria duurt het gemiddeld 10 tot 12 weken tot de leverbot volwassen is en eieren kan uitscheiden. De beste periode om mestonderzoek te doen is 3 maanden na het einde van het weideseizoen. Omwille van intermitterende uitscheiding is het uiteraard het best om meerdere dieren uit een groep te bemonsteren. Het aantonen van leverboteieren in de mest geeft informatie over de infestatie in de groep.

Aantonen van antistoffen in het bloed

Een leverbot infestatie geeft aanleiding tot het vormen van antistoffen in het bloed. Vier weken na het opdoen van een leverbotinfectie kunnen deze antistoffen in het bloed aangetroffen worden met behulp van een ELISA-test. De antistoffen zijn aantoonbaar tot 180 dagen na een infectie. Dit impliceert dat een besmetting opgelopen in het najaar, in het daaropvolgende jaar nog kan zorgen voor een positieve test op afweerstoffen in het bloed. Deze test kan dus niet gebruikt worden om een effectieve besmetting aan te tonen. Naast het opsporen van antistoffen kan er in het bloed ook gekeken worden naar de leverenzymgehaltes gamma-glutamyltransferase (GGT) en glutamaatdehydrogenase om een idee te krijgen van de leverbeschadiging die er heeft plaats gevonden.

Aantonen van antistoffen in de melk

Via tankmelkonderzoek wordt de Optische Densiteit Ratio (ODR) van antistoffen gericht tegen Fasciola hepatica bepaald. Dit tankmelkonderzoek kan het hele jaar gebeuren, maar preferentieel voor het einde van het weideseizoen. Hiermee krijgt de veehouder een idee over de graad van besmetting op bedrijfsniveau. Een ODR < 0,30 wordt als negatief beschouwd. Een ODR tussen 0,30 en 0,50 wijst op een leverbotbesmetting zonder ernstige productieverliezen. Een ODR > 0,50 wijst op een ernstige besmetting met leverbot met mogelijk negatieve gevolgen op melkgifte en fertiliteit.

Aantonen van antigenen in de mest

Met een ELISA-test die antigenen in de mest opspoort (hoge gevoeligheid) kan er gekeken worden of een dier al dan niet zwaar besmet is.

Lijkschouwing

Op gestorven dieren kan ook gekeken worden hoe ernstig de lever is beschadigd.

Leverbot – immuniteitsontwikkeling

De immuunrespons als reactie op de aanwezigheid van pathogenen valt onder te verdelen in aspecifieke immuunrespons en een verworven immuunrespons. De aspecifieke immuunrespons is zoals het woord al aangeeft niet specifiek voor een bepaald pathogeen en zal bijgevolg niet leiden tot een immunologisch geheugen. Bij de verworven of adaptieve immuunrespons zijn de B-cellen die zich kunnen differentiëren tot antistof secreterende plasmacellen en de T-cellen die zich differentiëren tot CD8+ cytotoxische T-cellen, CD4+ helper T-cellen en regulatoire T-cellen van belang. Er is veel bekend over de T-helpercel type 1 (Th1-cel) en type 2 (Th2-cel). De Th1-cel produceert voornamelijk IFN-γ en is van belang voor de activatie van macrofagen, voor de verwijdering van intracellulaire pathogenen en cellulaire immuniteit. De Th2-cel produceert voornamelijk IL-4 en is van belang voor de activatie en recruitment van ontstekingscellen en voor humorale immuniteit.

Infecties met Fasciola hepatica gaan gepaard met release van hoge concentraties Interleukine 4 (IL-4), IL-5 en IL-13 wat uiteindelijk resulteert in verhoogde IgE niveaus, eosinofilie en andere immuun responsen geassocieerd met het Th2 subtype. De vroege differentiatie tussen Th1/Th2 cellijn van de helper T-cellen wordt in de hand gewerkt door cytokines als IL-4 en IFN-γ. De hoge concentratie IL-4 bij een leverbotinfectie en bijgevolg de sterke Th2 immuunrespons zorgt tevens voor een neerwaartse initiële Th1 immuunrespons met minder productie van IFN-γ en verlaagde reactiviteit van lymfocyten tot gevolg.
Hieronder ziet u een schematische voorstelling van de immuunrespons regulatie geïnduceerd tegen Fasciola hepatica. (Bron: E. Moreau, Alain Chauvin)

Schematische voorstelling immuunregulatie tegen fasciola hepatica

Leverbot – immunomodulerende eigenschappen

Wormen hebben verschillende manieren ontwikkeld om aan de immuunrespons van de gastheer te ontsnappen. Maizels et al. noemden ze daarom ook “De meesters van de immunomodulatie”.
Deze immunomodulerende eigenschappen zorgen ervoor dat de worm in de gastheer blijft bestaan en kunnen leiden tot interacties met inflammatoire en immuunmechanismen die betrokken zijn bij andere infecties, vaccinaties, allergische reacties of auto-immuunziekten.

Enkele voorbeelden:

Bovine tuberculose

Bovine tuberculose (BTB) veroorzaakt door Mycobacterium bovis is wereldwijd nog steeds een belangrijke ziekte bij koeien. De eradicatieprogramma’s in de meeste landen zijn gebaseerd op:
• SICCT (single intradermal comparative cervical tuberculin test)
• IFN-γ bloedtest (tweedelijnstest).

Zoals hierboven aangegeven wordt tijdens een leverbotinfectie de Th1 immuunrespons en daarmee de cellulaire immuniteit onderdrukt. Hierdoor kan mogelijk afbreuk gedaan worden aan de gevoeligheid van de twee screeningstesten gebruikt in het veld met vals negatieve resultaten tot gevolg.
Dit mogelijk verband werd aangetoond door Robin J. Flynn aan de universiteit in Dublin.
Om een mogelijke interferentie te onderzoeken vaccineerde hij dieren al dan niet geïnfecteerd met leverbot met BCG vaccin (avirulente stam die gebruikt wordt in de humane geneeskunde).
De SCITT en IFN-γ test uitgevoerd bij de verschillende groepen dieren gaf de volgende resultaten:

SCITT en IFN gamma testresultaten

Uit bovenstaand experiment blijkt dat bij runderen geïnfecteerd met leverbot er mogelijk interferentie kan optreden met de bestaande screeningstesten voor BTB gebruikt in het veld.
Overmatige IL-4 secretie door leverbotinfectie is voornamelijk verantwoordelijk voor suppressie van Th1 cellulaire immuniteit die ontstaat na vaccinatie met Mycobacterium bovis.

De leverbot met zijn immuunmodulerende eigenschappen kan de vatbaarheid van de gastheer voor infecties met andere pathogenen verhogen. Immers het downregulerend effect van IL-4 op Th1 immuunrespons (welke gerelateerd is aan cellulaire immuniteit) kan ervoor zorgen dat bepaalde infecties waar deze immuniteit belangrijk is heftiger verlopen.

Salmonella dublin

Studies uitgevoerd in de late jaren 1970 en vroege jaren 1980 vonden dat co-infectie van runderen met Salmonella dublin en Fasciola hepatica leidde tot een verhoogde ernst van de klinische ziekte, een langer ziekteverloop en een verhoogde kans dat co-geïnfecteerde dieren dragers worden van S. dublin. De door F. hepatica onderdrukte pro-inflammatoire response bij Salmonella infectie zorgt ervoor dat de gevoeligheid voor deze intracellulaire parasiet toeneemt.

Escherichia coli O157

Escherichia coli O157 is een bacterie die verantwoordelijk is voor hemorragische diarree bij mensen. Runderen zijn reservoir van deze verocytotoxigene E. coli en zijn dus een mogelijk gevaar voor overdracht naar de mens. Uit een onderzoek uitgevoerd op de Universiteit in Liverpool is gebleken dat runderen die geïnfecteerd zijn met Fasciola hepatica een verhoogde kans op uitscheiding met de E. coli O157 vertonen. Door een goede controle van distomatose kan zo een mogelijke besmetting met E. coli O157 voorkomen worden.

Leverbot – preventie en behandeling

Bestrijding van de leverbot berust op twee pijlers.

Preventie

Een goed weidebeheerplan en het overdacht buiten zetten van dieren kan al een heel stuk helpen bij de bestrijding van leverbot. Met een aangepast weidebeheer is het contact tussen de eindgastheer en de infectieuze leverbotstadia sterk te verminderen.

Behandeling

Er zijn verschillende flukiciden op de markt in Nederland. Niet elke product is werkzaam tegen ieder stadium van de leverbot. Triclabendazol met een werkzaamheid tegen alle fasen van de leverbot was het middel dat gedurende jaren gebruikt is geweest om een infectie te bestrijden. Probleem is dat de leverbot steeds vaker resistent blijkt voor dit middel. Daarnaast kan triclabendazol niet gebruikt worden bij melkgevend vee. Producten met oxyclozanide kunnen gebruikt worden bij melkvee tijdens de lactatie en de volledige droogstandperiode en zijn actief tegen adulte leverbotten.

Dopharma heeft sinds kort Distocur 34 mg/ml met de actieve stof oxyclozanide in het productgamma. Dus behandeling van een leverbotinfectie of distomatose bij melkvee kan voortaan ook in Nederland zonder toepassing van de cascade.

Referenties

  • M.A.A. Rana et al, Fascioliasis in cattle – A review. The Journal of Animal & Plant Sciences, 24(3):2014, pages: 668-675
  • N.J. Beesley et al, Fasciola and Fasciolosis in ruminants in Europe: Identifying research needs. Transboundary and Emerging Diseases, 65 (Suppl. 1):2018, pages: 199-216
  • D.J.L. Williams, Liver fluke – an overview for practitioners. http://www.cattleparasites.org.uk/
  • N. Takeuchi-Storm et al, Patterns of Fasciola hepatica infection in Danish dairy cattle: implications for on-farm control of the parasite based on different diagnostic methods. Parasites & Vectors, 2018, 11:674
  • Focus op Leverbot, Praktische handleiding. DGZ – Ugent
  • E. Moreau and Alain Chauvin, Immunity against Helminths: Interactions with the Host and het incurrent infections. Journal of Biomedicine and Biotechnology, Volume 2010, Article ID 428593, 9 pages
  • R.J. Flynn et al, Experimental Fasciola hepatica infection alters responses to tests used for diagnosis of bovine tuberculosis. Infection and immunity, Mar. 2007, Pages: 1373-1381
  • M.M. Aitken et al, Effects of experimental Salmonella dublin infection in cattle given Fasciola hepatica thirteen weeks previously. Journal of Comparative Pathology Volume 88, Issue1, January 1978, pages: 75-84
  • A.K. Howell et al, Co-infection with Fasciola hepatica may increase the risk of Escherichia coli O157 shedding in British cattle destined for the food chain. Prevetmed, 2017

De toepassing van Amoxy Active® CTD 697 mg/g in drinkwater

Dopharma onderschrijft de ‘best practice’ gedachten van EPRUMA (European Platform for the Responsible Use of Medicines in Animals) in de ruimste zin van het woord. Centraal in de term best practice staan gezonde dieren en een gezonde veehouderij. Gezonde dieren zijn essentieel voor het waarborgen van dierenwelzijn, humane gezondheid en een optimaal rendement voor de pluimveehouder.
Best practice omvat goede veehouderijpraktijken en goede uitvoering van de diergeneeskunde (GVP). Een onderdeel hiervan is ook de correcte toepassing van diergeneesmiddelen. Bij pluimvee worden behandelingen meestal toegepast via het drinkwater.

Met de introductie van Amoxy Active® CTD 697 mg/g voor toepassing bij kippen, eenden en kalkoenen, wil Dopharma de correcte toediening van diergeneesmiddelen nog eens onder de aandacht brengen. Er zal hierbij natuurlijk speciale aandacht zijn voor het werkzame bestanddeel van Amoxy Active® CTD 697 mg/g, amoxicilline.

Voor de producteigenschappen verwijzen we u naar de productpagina op onze website.

De toepassing van diergeneesmiddelen via het drinkwater

Bij de juiste toepassing van diergeneesmiddelen via het drinkwater zijn een aantal factoren van belang, die allen in dit artikel aan bod komen:

  • dosering;
  • drinkwaterkwaliteit;
  • goede en schone leidingen;
  • kennis over de producteigenschappen van het diergeneesmiddel.

De dosering

Bij het toepassen van drinkwatermedicatie is de dosering een van de belangrijkste factoren voor een goed effect. Een goede drinkwaterdosering wordt bepaald aan de hand van:

  • de dosering in hoeveelheid werkzame stof of product in mg per kg lichaamsgewicht;
  • het lichaamsgewicht van de dieren in de stal;
  • de hoeveelheid drinkwater die per dag wordt opgenomen.

Hierbij kan ervoor gekozen worden de medicatie te verdelen over de gehele dag of gehele lichtperiode, of over een korte periode (zogenaamde pulsdosering).

Bij kuikens neemt het lichaamsgewicht erg snel toe. Daarnaast stijgt het lichaamsgewicht relatief veel harder dan de drinkwateropname, waardoor deze uit elkaar gaan lopen. Om deze reden wijzigt de drinkwaterdosering. De toename van lichaamsgewicht en wateropname worden weergegeven in Figuur 1.

Figuur 1 Verloop van gewicht, voer- en wateropname bij vleeskuikens

Om te illustreren hoe groot het effect van het toenemende lichaamsgewicht is op de drinkwaterdosering per 1000 liter water (eindoplossing), wordt in Figuur 2 een grafiek getoond met de hoeveelheid Amoxy Active® CTD 697 mg/g die toegediend zou moeten worden per 1000 liter water. Hierbij is gerekend met de dosering van 15 mg amoxicillinetrihydraat (19 mg product) per kg lichaamsgewicht per dag.

Figuur 2 Drinkwaterdosering van Amoxy Active® CTD 697 mg/g voor vleeskuikens in gram per 1000 liter water (eindoplossing) of 10 liter water (vooroplossing bij doseerapparaat op 10%)

Als een behandeling met Amoxy Active® CTD 697 mg/g bijvoorbeeld gestart zou worden op dag 20, zou je op de eerste dag van de behandeling een hoeveelheid van 906 gram product per 1000 liter water moeten geven, terwijl deze hoeveelheid op dag 22 al is toegenomen tot 966 gram product per 1000 liter water.

 

Doseringswijzer

Dopharma heeft voor het berekenen van de dosering de doseringswijzer ontwikkeld. Deze is te vinden via www.doseringswijzer.nl. U kunt hier de dosering berekenen voor vleeskuikens. U kiest het product, de leeftijd van de dieren, het aantal dieren en de gewenste dosering. Vervolgens doet de doseringswijzer een suggestie voor de drinkwater- (of voer)opname gedurende de gehele behandelperiode, die overgenomen of aangepast kan worden.
De doseringswijzer berekent dan de hoeveelheid van het product dat in totaal nodig is, maar ook de gemiddelde hoeveelheid product per dag en per 1000 liter water. Hierbij wordt rekening gehouden met de toename in lichaamsgewicht gedurende de behandeling. De individuele waardes van de berekening worden echter niet weergegeven, alleen het gemiddelde.
In Tabel 1 wordt een overzicht getoond van de dosering per dag en het gemiddelde zoals het wordt weergegeven in de doseringswijzer.

Op dit moment is het nog niet mogelijk om de dosering voor eenden en kalkoenen te berekenen in de doseringswijzer, maar deze functionaliteit zal gedurende de loop van dit jaar worden toegevoegd.

Drinkwaterkwaliteit

De drinkwaterkwaliteit is van groot belang wanneer er gemedicineerd wordt; niet alleen voor de oplosbaarheid, maar ook voor de stabiliteit van het werkzame bestanddeel na oplossen. Daarnaast kan een afwijkende drinkwaterkwaliteit van invloed zijn op de smaak, zeker in combinatie met bepaalde diergeneesmiddelen. De eisen die worden gesteld aan goed drinkwater zijn te vinden op de website van de Gezondheidsdienst voor dieren en worden weergegeven in Tabel 2.

Wanneer gebruik wordt gemaakt van leidingwater, mag men er vanuit gaan dat het drinkwater van voldoende kwaliteit is. Toch wordt geadviseerd om minimaal één keer per jaar water te laten onderzoeken op verschillende punten in de stal. Bij het gebruik van bronwater moet dit regelmatig worden gecontroleerd.
Ook IKB kip en IKB ei stellen eisen aan het drinkwater en de analyse hiervan. De grenswaarden die worden gehanteerd staat in de laatste kolom van Tabel 2.

Bij twijfel over de kwaliteit van het bronwater wordt geadviseerd om gedurende de behandeling tijdelijk gebruik te maken van leidingwater.

Drinkwaterleidingen

Drinkwaterleidingen kunnen uiteraard van verschillende materialen zijn gemaakt. Metalen leidingen kunnen na verloop van tijd corrosie vertonen, wat kan zorgen voor de afzetting van metaalzouten in het water. In delen van de drinkwaterleiding kunnen dan hoge concentraties worden bereikt, wat van invloed kan zijn op de fysische en/of chemische stabiliteit van het diergeneesmiddel.

Reiniging

Naast de kwaliteit van het drinkwatersysteem zelf, is ook het reinigen van de waterleidingen erg belangrijk. De meeste problemen met drinkwatermedicatie worden namelijk veroorzaakt door organische verontreiniging van het drinkwatersysteem.
Elk systeem wordt verontreinigd met micro-organismen zoals bacteriën en schimmels, en stof. In het drinkwatersysteem gaan deze micro-organismen zich vermenigvuldigen, maar de snelheid waarmee dit gebeurd is afhankelijk van de temperatuur, de aanwezige nutriënten, eventuele groei-remmende factoren en de snelheid waarmee het water door de leidingen stroomt. Bestanddelen van aanvullende diervoeders en diergeneesmiddelen kunnen dienen als voedingsbron, maar ook eiwitten die voorkomen in stof zijn een belangrijke nutritionele bron. Groei-remmende factoren zijn bijvoorbeeld reinigingsmiddelen of antibiotica.

Zorg er altijd voor dat de leidingen schoon zijn op het moment dat er gestart wordt met een behandeling en dat ze gereinigd worden aan het eind van de behandeling. Daarnaast verdient het aanbeveling om de emmer met de vooroplossing goed af te dekken met een deksel om te voorkomen dat er stof in de vooroplossing komt.

Biofilm

In sommige gevallen vormen micro-organismen een slijmlaag, waardoor ze goed kunnen hechten aan de leidingen en beschermd worden tegen invloeden van buitenaf. Dit noemen we een biofilm. Bacteriën waarvan bekend is dat ze biofilms kunnen maken zijn onder andere E. coli, Salmonella spp., Campylobacter spp en Pseudomonas aeruginosa. Biofilms worden niet altijd geproduceerd door pathogene bacteriën, maar ook wanneer ze gemaakt worden door een commensaal, kunnen pathogenen hier wel van profiteren.
In drinkwaterleidingen kan biofilm leiden tot verstoppingen van drinknippels of zelfs hele leidingen. In een recente Belgische studie is aangetoond dat in 63% van de monsters die genomen zijn aan de binnenkant van de leidingen op pluimveebedrijven micro-organismen aanwezig zijn in combinatie met nutriënten (eiwitten, koolhydraten of uronzuren), wat indicatief is voor de aanwezigheid van een biofilm.

Producteigenschappen: amoxicilline

Oplosbaarheid

Amoxicillinetrihydraat is een (bijna) wit en geurloos poeder.
De oplosbaarheid in water is het best bij een hoge pH of een lage pH.

De producten van Dopharma met amoxicilline bevatten pH-verhogende stoffen, die zorgen voor een verbetering van de oplosbaarheid. Bij de hoog geconcentreerde Amoxy Active® 697 mg/g en Amoxy Active® CTD 697 mg/g, kan het echter nodig zijn de pH verder te verhogen. Dopharma biedt hiervoor Metasol aan.

Stabiliteit

Er zijn enkele factoren die de stabiliteit van amoxicilline negatief kunnen beïnvloeden.

  • Hitte
    Het gebruik van warm of heet water moet daarom ook worden afgeraden. Als toch wordt gekozen voor het gebruik van warm water i.v.m. de verbeterde oplosbaarheid bij een hogere temperatuur, dan moet het product eerst worden opgelost in een kleine hoeveelheid warm (niet heet) water. Daarna wordt het direct verdund met koud water om de blootstelling aan het warme water zo veel mogelijk te beperken.
  • Een hoge hardheid
    Los amoxicilline bij voorkeur op in zacht water (< 10°dH).
  • De pH
    De stabiliteit van amoxicilline is optimaal bij een pH van 4,5. Bij een pH hoger dan 8 zal de degradatie van amoxicilline versneld optreden.
  • Interacties met metaal
    Contact van penicillineoplossingen met metaal en het gebruik van metalen drinkwatersystemen kunnen de stabiliteit van penicilline negatief beïnvloeden. Om deze reden wordt het gebruik van kunststof waterleidingen en emmers aanbevolen.
    De stabiliteit van amoxicilline bij verschillende hardheden en temperaturen wordt weergegeven in Figuur 3.

Als er degradatie optreedt, zal een oplossing met amoxicilline verkleuren van kleurloos naar bruingeel.
In verband met de mogelijke degradatie van de werkzame stof wordt altijd geadviseerd om een oplossing met amoxicilline nooit langer dan 12 uur te bewaren. Dit is ook opgenomen in de SPC van Amoxy Active® CTD 697 mg/g.

Figuur 3 Stabiliteit van oplossingen met amoxicilline bij verschillende hardheid en temperatuur

Conclusie

Zoals u hierboven kunt lezen, is het belangrijk om te werken met goed drinkwater en goede en schone materialen. Daarnaast is het essentieel om de producteigenschappen in acht te nemen. De belangrijkste adviezen voor het toepassen van amoxicilline in drinkwater zijn door Dopharma samengevat in een oplosbaarheidsflyer.

Referenties

1. Gezondheidsdienst voor dieren – Grenswaarden veedrinkwater. https://www.gddiergezondheid.nl/diergezondheid/management/drinkwater/referentiewaarden%20veedrinkwaterkwaliteit.
2. Maes, S., Vackier, T., Huu, S.N., Heyndrickx, M., Steenackers, H., Sampers, I., Raes, K., Verplaetse, A., de Reu, K. (2019) Occurrence and characterisation of biofilms in drinking water systems of broiler houses.
Dit artikel is verder gebaseerd op laboratoriumonderzoeken uitgevoerd door Dopharma research.

Y-D-Fix®, een nieuwe benadering ter vermindering van speendip bij biggen.

In dit artikel geven we u een kijkje gegeven in de ontwikkeling van het innovatief en gepatenteerde supplement Y-D-Fix®, dat bedoeld is voor biggen in de kraamstal.

Sinds de druk op de toepassing van antibiotica bij dieren is toegenomen, zijn er zeer veel alternatieve, natuurlijke producten op de markt gekomen die de gezondheid van dieren moeten bevorderen. Dopharma wilde een product ontwikkelen dat de speendip bij biggen moest voorkomen of verminderen. Hierbij stond centraal dat de kwaliteit en de werkzaamheid van het product goed onderbouwd zou worden: het moest een Evidence Based Nutraceutical (EviBaN) zijn.

Speendip

Het moment van spenen tot enkele weken na het spenen is een moeilijk periode voor biggen. In die fase is de passieve afweer geminimaliseerd en is de actieve afweer pas goed op gang aan het komen (zie afbeelding, bron: Sucaet C. Antibioticareductie bij gespeende biggen door zuren [thesis]. Ghent: University of Ghent; 2014).


Naast de dip in de afweer worden biggen na het spenen meestal blootgesteld aan een hogere infectiedruk vanuit de omgeving en (nieuwe) hokgenoten. Ook de vele veranderingen die na het spenen plaatsvinden veroorzaken stress wat een negatief effect op de gezondheid kan hebben. Denk hierbij aan een andere omgeving, een ander stalklimaat, andere hokgenoten en de overgang van zeugenmelk naar vast plantaardig voer. Zeker deze laatste verandering kan tot een slechte of onregelmatige voeropname na het spenen leiden met darmschade en verminderde groei als direct gevolg. Daarnaast is er bij een slechtere darmgezondheid meer kans op infecties op darmniveau.

Een gevolg van deze speendip bij biggen is dat er in deze periode relatief veel antibiotica gebruikt worden om de biggen gezond te houden.

Bij de ontwikkeling van een product om deze speendip te voorkomen of te verminderen werd eerst een overzicht gemaakt van alle factoren die van invloed zijn op deze problematiek. Van alle mogelijke interventies werd het sturen van darmgezondheid door middel van voer als meest veelbelovend gezien. We zijn daarom gestart met het analyseren van zeugenmelk, ervan uitgaande dat de samenstelling daarvan de meest optimale  voeding is voor jonge biggen.

Zeugenmelk

Op verschillende varkensbedrijven werden zeugen gemolken. De melk werd geanalyseerd en vergeleken met wat bekend is in de wetenschappelijke literatuur. De analyses in de gedateerde wetenschappelijke publicaties (jaren ’80 en ’90) verschilden sterk van de analyses van Dopharma’s eigen onderzoek. Vooral de hoeveelheid cholesterol en vet blijkt nu veel lager te zijn dan in de jaren ’80 en ’90.

In de figuren hieronder is dit verschil weergegeven. Hierbij is uitgegaan van de hoeveelheid vet en cholesterol die wordt opgenomen per één liter zeugenmelk. Daarnaast is de hoeveelheid vet en cholesterol weergegeven die wordt opgenomen na het spenen indien de biggen alleen biggenvoer opnemen.

De reden voor het grote verschil in melksamenstelling is niet geheel duidelijk. Mogelijke oorzaken kunnen een veranderd voedingspatroon en de veranderde genetica van zeugen zijn. Het is een feit  dat er niet of nauwelijks bewust op melksamenstelling is geselecteerd in de fokkerij.
Interessant is verder dat uit de analyses blijkt dat de relatieve vetzuursamenstelling in zeugenmelk door de jaren heen niet veel is veranderd. Hieronder zijn de meest voorkomende vetzuren in zeugenmelk en enkele biggenvoeders weergegeven.

 

We formuleerden de hypothese dat een supplement rijk aan cholesterol en de belangrijkste vetzuren die in zeugenmelk voorkomen, bevorderend zal zijn voor de darmgezondheid van biggen. De zoektocht naar de juiste bronnen voor zo’n supplement was niet eenvoudig. Blijkbaar bevat zeugenmelk relatief veel van bepaalde vetzuren die moeilijk te vinden zijn in voedermiddelen. Uiteindelijk werden een aantal prototypes van een supplement gemaakt. Deze prototypes werden in vitro onderzocht in darmmodellen. Na het induceren van stress in het darmmodel door het toevoegen van het mycotoxine DON werd gekeken naar de Trans Epitheliale Electrische Weerstand (TEER), een maat voor darmintegriteit, en naar de productie van interleukine 8 door de darmcellen. Hieruit bleek dat het toevoegen van één prototype aan het darmmodel (supplement D) duidelijk gunstiger was in vergelijking met de andere prototypes en controles.

Dierstudies

Naar aanleiding van de resultaten van de in vitro proeven werd een experimentele dierstudie ontworpen. In de proefstal van Dopharma werden een aantal supplementen, waaronder prototype D, vergeleken na toedienen aan biggen rondom het spenen. De biggen die in de proefstal werden geboren kregen dagelijks de verschillende supplementen vanaf vijf dagen vóór het spenen met een maagsonde toegediend. Twee dagen na het spenen werden de biggen uitvoerig onderzocht op allerlei parameters. De biggen die prototype D toegediend hadden gekregen hadden significant gunstigere onstekingswaarden zoals alkalische fosfatase en interleukine 8. Daarbij was de dagelijkse groei van deze biggen ook significant hoger en dit was het meest duidelijk bij de lichtste biggen.

Voordat de volgende stap werd gemaakt, het uitvoeren van een veldproef met het meest veelbelovende prototype D, werd de houdbaarheid van het toekomstige product verbetert. Tot nu toe was het een vloeibare emulsie die slecht houdbaar was. Er werd veel moeite gedaan om het vetrijke product te sproeidrogen. Dit was een duur procedé maar het resultaat was een mooi droog product dat de naam Y-D-Fix kreeg. Met dit product werd een eerste veldproef op een zeugenbedrijf uitgevoerd. Het product werd net als in de proefstal vijf dagen vóór het spenen gegeven. Ditmaal werd het product in bakjes in het kraamhok aangeboden aan de biggen. Een opmerkelijke bevinding was dat de biggen dit gesproeidroogde product zeer goed opnamen. Blijkbaar was het voor de biggen zeer smakelijk. Dit was een  prettige bijkomstigheid maar na het spenen gaf dit problemen. De biggen kregen na het spenen nog maar een zeer kleine fractie Y-D-Fix aangeboden (naast speenvoer) en dit verminderde de voeropname direct na het spenen. Deze biggen presteerden daarom slechter dan de controlegroep. Een meer geleidelijke voerovergang bleek in een nieuw opgezette experimentele proef wel goed resultaat te geven.

Met de inzichten van de eerste veldproef werden zowel het product als de toedieningswijze veranderd. Y-D-Fix werd gemengd met ontsloten tarwegries. Tarwe wordt het meest gebruikt in speenvoeders en dit werd als beste aansluiting op het speenvoer gezien. De optimale verhouding Y-D-Fix/tarwegries werd bepaald door enkele smaakproeven bij jonge biggen. Dit finale product werd in een tweede veldproef ingezet vanaf 4 dagen leeftijd. Vanaf deze leeftijd kunnen enzymen geïnduceerd worden die plantaardige grondstoffen kunnen verteren. Dit “trainen van de darmen” in combinatie met de goede opname van het droge supplement zou de big optimaal moeten voorbereiden op het speenproces.

Op een zeugenbedrijf werd een gerandomiseerde en gecontroleerde veldstudie onder Good Clinical Practice (GCP)-regime uitgevoerd. Dit zeugenbedrijf had normaal gesproken moeite om de biggen in het kraamhok voldoende voer op te laten nemen. In de proefgroep kregen de biggen vanaf 4 dagen leeftijd tot vijf dagen vóór het spenen één keer per dag onbeperkt Y-D-Fix. Vanaf vijf dagen vóór het spenen tot vijf dagen na het spenen kreeg de proefgroep een beperkte hoeveelheid Y-D-Fix (15 gram/big/dag) aangeboden naast het gewone speenvoer. De controlegroep kreeg op een vergelijkbare manier een prestarter en vervolgens speenvoer (beiden onbeperkt). Zowel de voeropname in het kraamhok als de groei op bijna negen weken leeftijd was significant beter in de proefgroep dan in de controlegroep.

In bovenstaande grafiek is de cumulatieve voeropname in het kraamhok weergegeven voor de proefgroep (Y) en de controlegroep (Co). In de proefgroep betreft dit het supplement Y-D-Fix + speenvoer; in de controlegroep is dit prestarter en speenvoer.
Hieronder is het lichaamsgewicht van beide groepen in het traject geboorte tot 61 dagen leeftijd weergegeven. De “Y-D-Fix biggen” wogen gemiddeld 2 kg meer dan de biggen in de controlegroep op een leeftijd van nog geen negen weken.

Een belangrijke bevinding was dat in de periode vanaf vijf dagen vóór het spenen, waar Y-D-Fix beperkt werd gegeven, de biggen ook goed startten met de opname van speenvoer. Dit was immers een punt van aandacht in de eerste veldproef.

Om de positieve resultaten van de tweede veldproef te bevestigen werd een derde uitgebreide veldproef uitgevoerd. Ditmaal op een gesloten bedrijf zodat ook de vleesvarkens gevolgd zouden kunnen worden. Op dit bedrijf kreeg de controlegroep vanaf vier dagen leeftijd nat voer met veel gemakkelijk verteerbare melkcomponenten aangeboden. De Y-D-Fix proefgroep volgde hetzelfde voerschema als in de vorige veldproef. Er werd echter op 25 dagen gespeend i.p.v. op 27 dagen.

In deze tweemaal uitgevoerde proef (twee weekgroepen met een maand tussentijd) waren de “Y-D-Fix biggen” even zwaar of zelfs lichter dan de controlebiggen op het moment van opleg in de vleesvarkensstal. Door het individueel blijven opvolgen van de lichaamsgewichten van de dieren kon echter aangetoond worden dat de vleesvarkens uit de Y-D-Fix groep op het einde van de vleesvarkensfase gemiddeld 2,5 kg zwaarder waren dan de controledieren. De Y-D-Fix groep had de controlegroep dus op het einde van het traject ruimschoots ingehaald.

Besluit
Het is opvallend dat de samenstelling van zeugenmelk vooral op het gebied van de hoeveelheid vet en cholesterol zo verschilt met zeugenmelk van enkele decennia geleden. Het supplement dat met deze informatie is ontwikkeld blijkt in verschillende proeven positieve effecten te hebben op biggen:

  • Y-D-Fix draagt bij aan een normale darmgezondheid.
  • Y-D-Fix verhoogt de voeropname van biggen voor het spenen.
  • Biggen die Y-D-Fix krijgen, hebben een uniformere voeropname.
  • Het gebruik van Y-D-Fix voorkomt gewichtsverlies van biggen bij het overschakelen van melk naar vast voer (in de speenperiode).
  • Y-D-Fix verbetert de groei van biggen na het spenen en het lichaamsgewicht bij de slacht.

Y-D-Fix is gepatenteerd en wordt alleen verdeeld via varkensdierenartsen. De inzet van dit innovatieve supplement is maatwerk en de toediening kan daarom van bedrijf tot bedrijf verschillen. De dierenarts is dé specialist die Y-D-Fix met het meeste rendement kan inzetten op varkensbedrijven.

Bekijk de productpagina

Tilmicosine doet meer dan je denkt

Tilmicosine is een antibioticum in de macroliden groep dat bij landbouwhuisdieren vaak wordt ingezet. In dit artikel leggen we uit waarom dit zo’n veelgebruikt molecuul is. Ook wordt informatie gegeven over de aandoening waarvoor dit product wordt ingezet, luchtwegproblemen bij kalveren.

Luchtwegproblemen bij kalveren

Het najaar en de winter zijn berucht om de problemen met zieke, hoestende kalveren. Deze luchtwegproblemen zijn het gevolg van indringers ter hoogte van de luchtwegen. De slijmlaag en trilhaartjes (eerstelijnsbescherming) werken normaliter mogelijke indringers naar buiten. Maar onder invloed van een aantal ziekteverwekkers en /of onder bepaalde omstandigheden, zoals stress of verminderde immuniteit door diarree werkt deze eerstelijnsbescherming niet voldoende. Dit kan resulteren in BRD (bovine respiratory disease). Dit ziektecomplex wordt meestal veroorzaakt door een verscheidenheid aan pathogenen, waaronder virussen (boviene respiratoire syncitieelvirus, parainfluenza-3, adenovirus, BVDV, BHV1, coronavirus), bacteriën (Pasteurella multocida, Mannheimia haemolytica, Histophilus somnus, Mycoplasma bovis), parasieten (longworm) en schimmels (Aspergillus), die, al dan niet in combinatie, kunnen leiden tot een ontsteking of allergische reactie en soms zelfs tot ernstige ziekte. Vooral jonge runderen tot één jaar oud zijn zeer gevoelig voor luchtwegproblemen. Bij deze diergroep veroorzaken luchtwegproblemen ook veel schade. Op korte termijn vanwege sterfte, behandelkosten en extra werk, maar vooral op lange termijn door groeiachterstand. Luchtwegproblemen zijn daarom een permanente bedreiging voor het inkomen van de veehouder.

Pasteurellacea

De belangrijkste bacteriële veroorzakers van longproblemen behoren tot de family Pasteurellacea. Mannheima haemolytica is zonder twijfel de belangrijkste, maar ook Pasteurella multocida en Histophilus somni worden dikwijls geïsoleerd uit monsters van zieke kalveren. Mannheimia haemolytica is een commensaal van de bovenste luchtwegen. Door allerlei stressfactoren kan de afweer van de kalveren verminderen, waardoor deze bacterie zich een weg kan banen naar de longen. Voorbeelden van zulke stressfactoren zijn verandering van voeding, weersveranderingen, hoge luchtvochtigheid, overbezetting. De bacteriële virulentiefactoren LPS en leucotoxine van Mannheimia en het geïnduceerde ontstekingsproces (infiltratie van neutrofielen) zijn verantwoordelijk voor de serieuze pathologie, weefselschade en mogelijke sterfte bij een infectie. Daarom is het van groot belang dat de ontstekingsreactie die optreedt bij een Mannheimia-infectie snel geremd wordt.

Aanpak van luchtwegproblemen

De aanpak van luchtwegaandoeningen op bedrijfsniveau moet vooral gericht zijn op preventie. Binnen die preventieve maatregelen is het in de eerste plaats nuttig om de eigen afweer van het dier te optimaliseren. Dit kan door te zorgen voor een optimaal biestmelkbeleid, een correct rantsoen en een op de bedrijfssituatie aangepast vaccinatiebeleid. Daarnaast is het ook belangrijk de omgevingsfactoren te optimaliseren. In de praktijk worden regelmatig antibacteriële middelen in gezet om de luchtweginfectie te bestrijden. De keuze van het antibioticum kan het best gemaakt worden aan de hand van een antibiogram. Daarnaast is het gebruik van ontstekingsremmers bij een luchtweginfectie zeker aan te raden.

Macroliden – tilmicosine

Tilmicosine, een antibioticum uit de macroliden groep, wordt bij landbouwhuisdieren dikwijls gebruikt om een respiratoire infectie te behandelen. En dit is niet verwonderlijk. Tilmicosine heeft naast een antibacteriële werking ook een aantal bijzondere eigenschappen, die de stof een unieke positie verlenen.

Werkingsmechanisme

Antibacteriële werking

Antibiotica uit de groep van de macroliden gaan een reversibele binding aan met de 50S subunit van het ribosoom. De 50S subunit is de grote subunit en is verantwoordelijk voor het samenvoegen van de verschillende aminozuren zodat deze één keten (peptide) vormen. Dit is voornamelijk afhankelijk van het enzym peptidyltransferase. In de aanwezigheid van macroliden worden dus alleen incomplete eiwitketens gevormd. Macroliden worden doorgaans geclassificeerd als bacteriostatisch. In sommige gevallen is het effect echter bactericide. Dit is afhankelijk van de concentratie van het antibioticum, de periode waarin de concentratie hoger is dan de MIC, de bacteriestam die behandeld wordt en de hoeveelheid bacteriën. Naast zijn activiteit tegen Gram-positieve bacteriën is tilmicosine ook actief tegen Pasteurella’s en Mycoplasma.

Post-antibiotisch effect

Het in vitro remmende effect van tilmicosine op de bacteriële eiwitsynthese houdt langer aan dan de tijd dat de concentratie van antibioticum boven de MIC is. Dit zogenaamde post-antibiotische effect (PAE) is afhankelijk van de concentratie en de duur van de blootstelling en geldt hoofdzakelijk voor Gram-positieve bacteriën. Het PAE kan tot enkele uren aanhouden en is dus klinisch relevant.

Immuno-modulerende werking

In in vitro en in vivo proeven werd aangetoond dat tilmicosine apoptose van bronchoalveolaire PMN (polymorfonucleaire neutrofiele granulocyten) en reductie van leukotriene B4 synthese in de long induceert, welke bijdragen aan de klinische werkzaamheid van tilmicosine. Tevens bevordert de PMN apoptose de fagocytische inname van PMN’s door macrofagen.

Figuur 1 Cellulaire accumulatie (ratio cellulaire ten opzichte van extracellulaire concentratie) van tilmicosine in alveolaire macrofagen (□) monocyten-macrofagen (+), mammaire epitheliale cellen ( o), en mammaire macrofagen (∆).

In alveolaire macrofagen, welke de fagocytosecellen in de longen zijn, accumuleert tilmicosine tot een buitengewoon niveau. Op vier uur tijd is de verhouding van de concentratie cellulair ten opzichte van de concentratie extracellulair 195.

Deze grote hoeveelheid antibioticum vergroot het vermogen van de fagocyt om de opgenomen bacteriën te vernietigen. De verklaring hiervoor is dat tilmicosine (base) lysosomotroop is en zich concentreert in de lysosomen van de macrofaag omwille van ion trapping. De aanwezigheid van twee aminegroepen in de structuur van tilmicosine zijn verantwoordelijk voor een hogere ionisatiegraad en opstapeling in de lysosomen. Hier onderscheidt tilmicosine zich van de andere macroliden met één aminogroep.

Farmacokinetische eigenschappen

Macroliden zijn lipofiele substanties die een zwak basisch karakter hebben. Daardoor zijn ze zeer instabiel in een zure omgeving en kunnen ze snel door middel van niet-ionische diffusie in weefsels met een lagere pH penetreren. Vooral in de long, lever, gal, nier, milt en het pleuraal en peritoneaal vocht bereiken ze hoge weefselconcentraties. Bovendien vertonen ze een zeer goede intracellulaire penetratie, voornamelijk in macrofagen. Na orale toediening aan kalveren via kunstmelk, wordt tilmicosine geabsorbeerd en gaat het snel van het serum naar zones met een lage pH. Hierdoor ontstaan zeer lage serumconcentraties, maar worden er hoge tilmicosine concentraties gevonden in het longweefsel, al zes uur na het begin van de behandeling. Bij kalveren blijft tilmicosine daar in therapeutische concentraties aanwezig tot 60 uur na de laatste toediening.

In de lever worden macroliden voor ongeveer 50% omgezet in werkzame en onwerkzame metabolieten. Excretie vindt voornamelijk plaats via de gal. Via de nieren wordt 5 – 20% van de toegediende dosis in werkzame vorm uitgescheiden.

Resistentie

Resistentie tegen macroliden kan snel ontstaan en wordt meestal door een plasmide overgedragen. Deze resistentie kan via drie verschillende mechanismen optreden:

  • Het wijzigen van de bindingsplaats op het ribosoom waardoor het macrolide niet meer kan binden op nieuw gevormde ribosomen.
  • De actieve afvoer van macroliden uit de bacteriële cel.
  • Hydrolyse van de lactonenring door esterasen.

Contra-indicaties en bijwerkingen

De veiligheidsmarge bij gebruik van tilmicosine is relatief klein. Overdosering kan leiden tot cardiotoxiciteit met mogelijke sterfte als gevolg. Het molecuul mag parenteraal alleen worden toegediend door de dierenarts.

Tilmovet® 250 mg/ml – REG NL 10560

Tilmicosine kan ingezet worden op allerlei manieren. In het gamma van Dopharma hebben we Tilmovet® 250 mg/ml, een oplossing voor oraal gebruik voor de doeldieren kalf, varken, kip en kalkoen. De oplossing kan worden gebruikt voor toediening in drinkwater of kalvermelk. Voor kalveren is Tilmovet® 250 mg/ml geïndiceerd voor koppelbehandeling van luchtweginfecties geassocieerd met Mannheimia haemolytica, Pasteurella multocida, Mycoplasma dispar en Mycoplasma bovis.

De dosering voor kalveren is 12,5 mg tilmicosine per kg lichaamsgewicht, twee maal daags, gedurende 3 tot 5 dagen. Dit komt overeen met 1 ml product voor 20 kg lichaamsgewicht tweemaal daags gedurende 3 tot 5 dagen. De opname van gemedicineerde melk is afhankelijk van de klinische conditie van de dieren. Teneinde een juiste dosering te verkrijgen, dient de concentratie van het product in de kalvermelk dienovereenkomstig te worden aangepast. De wachttijd vlees voor kalveren is 42 dagen.

Tildosin® 300mg/ml – REG NL 117947

De injecteerbare vorm van tilmicosine, Tildosin® 300 mg/ml, kan worden ingezet bij runderen en schapen voor de behandeling van luchtwegaandoeningen geassocieerd met Mannheimia haemolytica en Pasteurella multocida. Bij schapen kan tilmicosine ook worden ingezet als behandeling van rotkreupel veroorzaakt door Dichelobacter nodosus en Fusobacterium necrophorum en voor de behandeling van acute mastitis veroorzaakt door Staphylococcus aureus en Mycoplasma agalactiae.

De dosering voor kalveren is 10 mg tilmicosine per kg lichaamsgewicht wat overeenkomt met 1 ml product per 30 kg lichaamsgewicht. De wachttijd voor vlees bedraagt 70 dagen; voor melk 36 dagen.

Omdat het injecteren van tilmicosine niet zonder risico’s is, mag Tildosin uitsluitend door de dierenarts worden toegediend.

Conclusie

Bacteriële longproblemen bij runderen moeten vlug en effectief worden aangepakt zodat blijvende schade aan de longen voorkomen wordt. Naast een aantal preventieve middelen die kunnen worden genomen en is het raadzaam om kalveren te behandelen met een werkzaam antibioticum. Het antibioticum tilmicosine onderscheidt zich van andere moleculen omdat het naast een antibacteriële werking ook immunomodulerende eigenschappen bezit.

Gelieve de SPC te raadplegen voor uitgebreide informatie over onze producten.

Referenties

  1. Alex C. Chin et al. (2000) – Tilmicosin induces apoptosis in bovine peripheral neutrophils in the presence or in the absence of Pasteurella haemolytica and promotes neutrophil phagocytosis by macrophages. – Antimicrobial agents and chemotherapy, Sept. 2000,
  2. 2465–2470.
  3. André G. Buret (2010) – Immuno-modulation and anti-inflammatory benefits of antibiotics: The example of tilmicosin – The Canadian journal for Veterinary Research, 2010; 74: 1–10.
  4. R. N. Gourlay (1989) – Effect of a new macrolide antibiotic (tilmicosin) on pneumonia experimentally induced in calves by Mycoplasma bovis and Pasteurella haemolytica – Research in Veterinary Science 1989, 47, 84-89.
  5. Bernard Scorneaux (1999) – Intracellular accumulation, subcellular distribution, and efflux of Tilmicosin in bovine mammary, blood, and lung cells – Journal of Dairy Science, July 1999.
  6. Wilson D. LEE (2004) – Tilmicosin-induced bovine neutrophil apoptosis is cell-specific and downregulates spontaneous LTB4 synthesis without increasing Fas expression – Vet. Res. 35.
  7. Gecommentarieerd geneesmiddelenrepertorium voor diergeneeskundig gebruik 2016.
  8. Giguire – Antimicrobial therapy in veterinary medicine – fourth edition.

Krijg jij ook soms vragen over positief geteste melk met de Delvotest®?

Krijg jij als dierenarts soms ook de vraag van een boer waarom een melkmonster van een individuele koe, na het verstrijken van de wachttijd, toch nog positief test met de Delvotest®?

In dit artikel vind je meer informatie over de Delvotest, alsook enkele mogelijke verklaringen voor een vals positieve Delvotest.

Werkingsmechanisme van de Delvotest

De test bestaat uit:

  • ampullen met agar medium;
  • incubator.

In het agar medium zit:

  • een gestandaardiseerde hoeveelheid sporen van Bacillus stearothermophilus var. Calidolactis;
  • nutriënten om deze bacteriën te doen groeien;
  • de pH-indicator bromocresol (die de vloeistof paars kleurt).

In de ampullen zitten dus alle ingrediënten die nodig zijn om de sporen van Bacillus stearothermophilus te laten ontkiemen. Na een incubatietijd van 3 uur en 15 minuten bij een temperatuur van 64°C zal dit dan ook gebeuren. Bij een te lange incubatietijd vermindert de testgevoeligheid.

Als melk zonder bacterie groeiremmende stoffen aan de testampul wordt toegevoegd, zal er na de incubatieperiode ontkieming van de sporen en uiteindelijk groei van de bacteriën kunnen plaatsvinden. Dit veroorzaakt een pH-verandering en de pH-indicator zal de kleur doen veranderen van paars naar geel.

Als melk een te grote hoeveelheid bacterie groeiremmende stoffen bevat, vindt er geen groei van de bacteriën in de ampul plaats: de kleur blijft paars.

Hieronder een voorbeeld van de kleuromschakeling.

Bewaarcondities

Om een goede screening te kunnen uitvoeren, is het van belang dat bewaring van de testkit gebeurt op de aangegeven manier. De testen dienen rechtop in de originele verpakking te worden bewaard. De test dient bewaard te worden in het donker, bij een temperatuur tussen de 4 °C en 8 °C. De cups mogen niet bevriezen. Wisselende temperaturen kunnen de inhoud zacht maken waardoor de agar los komt en er luchtbellen kunnen ontstaan. Als de ampullen bij hogere temperatuur worden bewaard gaat dit ten koste van de houdbaarheid.

Afwijken van de bewaarcondities kan leiden tot afwijkende resultaten.

Houdbaarheidsdatum

De vervaldatum op de verkoopverpakking dient gerespecteerd te worden.

Hoe de Delvotest uitvoeren?

Om betrouwbare resultaten te krijgen dient de Delvotest juist te worden uitgevoerd. Bekijk de instructievideo.  

Gevoeligheid van de Delvotest

In het veld wordt de Delvotest ingezet om melk te testen op de aanwezigheid van antibiotica. De meest courante antibiotica kunnen met deze test opgespoord worden. Voor sommige antibiotica is de detectiewaarde gelijk aan de Europese Maximum Residue Level (MRL), maar voor andere is de detectiewaarde lager of hoger dan de wettelijke MRL.

Hieronder een overzichtslijst van de sensitiviteit van Delvotest voor de meeste antibiotica op de markt.

Antibioticumklasse Antibioticum MRL

uitgedrukt in pbb

Detectiewaarde van Delvotest op basis van ampullen uitgedrukt in ppb
Penicillinen Amoxicilline 4 4
Ampicilline 4 4
Penicilline G 4 2
Cloxacilline 30 6
Oxacilline 30 30
Tetracyclinen Oxytetracycline 100 100
Chlortetracycline 100 150
Tetracycline 100 70
Doxycycline (0) 50
Sulfonamiden Sulfamethazine 100 135
Sulfathiazole 100 40
Sulfadimethoxine 100 40
Sulfadiazine 100 40
Macroliden Tilmicosine 50 60
Tylosine 50 35
Erythromycine 40 160
Aminoglycosiden Neomycine 1500 60
Gentamycine 100 65
Kanamycine 150 1010
DH/Streptomycine 200 4240
Spectinomycine 200 2010
Cephalosporines Cephapirine 60 6
Ceftiofur puur^ 100 20
Cefoperazone 50 40
Cefalexine 100 30
Cefquinone 20 40
Andere Lincomycine 150 220
Trimethoprim 50 110
Rifamixine 60 40

^ceftiofur met metabolieten hebben een detectielimiet van 4 keer hoger

Private eisen van zuivelorganisaties

Een zuivelbedrijf kan aanvullende private eisen opnemen in haar leveringsvoorwaarden. De toegelaten grens van een specifiek antibioticum in de melk kan dus per organisatie verschillen, uiteraard moet altijd wel aan de Europese MRL worden voldaan.

Vals-positieve resultaten met Delvotest

De Delvotest is een microbiële test gebaseerd op de remming van bacteriën. Dit betekent dat de test ook een positief resultaat kan geven indien er andere bacteriegroeiremmende stoffen dan antibiotica in het melkmonster aanwezig zijn.

Onderstaande oorzaken kunnen mogelijk verantwoordelijk zijn voor vals-positieve resultaten

Aanwezigheid in de melk van:

  • Natuurlijke inhibitoren zoals lysozym en lactoferrine
    Lysozym en lactoferrine zitten als natuurlijke inhibitoren in de melk en kunnen zorgen voor een vals-positief resultaat. Bij nieuwmelkse koeien en koeien met mastitis is de concentratie van deze stoffen in de melk relatief hoog;
  • Desinfectiemiddelen en reinigingsproducten
    Ook desinfectiemiddelen zoals iodine, chloor of waterstofperoxide (30%) kunnen bij resp. 150 ppb, 200 ppb en 600 ppb een vals-positief resultaat geven;
  • Hoog melkvetpercentage
    Melk met een vetpercentage boven de 6% reageert in het veld ook vals-positief;
  • Hoge concentratie aan somatische cellen
    Melk met een concentratie aan somatische cellen hoger dan 106 per ml kan een vals-positief resultaat opleveren;
  • Zure melk
    Microbiologische inhibitortesten zijn extreem gevoelig voor een lage pH van de monsters.

Ook anderen factoren kunnen zorgen voor een vals-positief resultaat:

  • Mechanische defecten aan incubator
    Een niet correcte incubatietemperatuur (<62°c – >66°C) of een te korte incubatietijd kan een vals-positief resultaat geven;
  • Foute bewaring van Delvotest
    De test dient op de juiste manier bewaard te worden. Bewaring bij een te hoge of te lage temperatuur kan er voor zorgen dat aanwezige sporen in het agar afsterven waardoor groei ervan en hierdoor kleurverandering niet meer mogelijk is;
  • Een foutief uitgevoerde test
    Het niet correct volgen van de werkinstructie kan verantwoordelijk zijn voor vals-positieve resultaten;
  • Onhygiënisch werken
    De test moet steeds worden uitgevoerd met propere handen op een schoon werkvlak. Een onhygiënisch uitgevoerde test kan vals-positieve resultaten geven.

Wat te adviseren bij een positieve Delvotest op de melk?

Bij een positieve Delvotest op melk bij een individuele koe, is het raadzaam om een hertest uit te voeren. Het advies hierbij is om de melk vóór de hertest kort gedurende 10 minuten te verhitten bij 80°C om zo het eventueel aanwezige lysozym of lactoferrine in de melk te neutraliseren. Voer daarna de test opnieuw uit volgens de werkinstructie van de producent van de Delvotest.

Conclusie

De Delvotest is een betrouwbare screeningstest op bacteriegroei remmende stoffen in de melk. Een positieve geteste melk kan dus ook worden veroorzaakt door de aanwezigheid van andere groeiremmende stoffen dan antibiotica. Ook het niet correct uitvoeren van de test kan aan de oorzaak liggen van een positief resultaat. Heeft u vragen over een positieve Delvotest, vraag uw dierenarts dan om raad.

Referenties

(Referenties zijn op te vragen bij Technical support)

  1. DSM Delvotest® – Specification sheet
  2. DSM Delvotest® – Technical data sheet
  3. DSM Delvotest® – Technical bulletin
  4. Verordening (EEG) nr. 2377/902
  5. Influence of Preservative Concentration, pH Value and Fat Content in Raw Milk at Detection Limit of Microbial Inhibitor Tests (Delvotest® Accelerator) for Amoxicillin and Oxytetracycline – Slavko Mirecki & Nikoleta Nikolić (2016).

Is ons vlees veilig?

De meeste mensen consumeren dierlijke producten, waaronder vlees, vis, eieren, melk (of melkproducten zoals kaas en yoghurt) en honing. Deze producten zijn een gezond onderdeel van onze voeding en zijn dan ook opgenomen in de schijf van vijf. Zo nu en dan zijn er echter incidenten waarbij de veiligheid van deze producten ter discussie staat, bijvoorbeeld bij de affaire met fipronil in eieren. In Nederland en de rest van Europa worden echter heel veel maatregelen getroffen om de kwaliteit en veiligheid van ons voedsel, en dus ook van dierlijke producten, te garanderen.

In dit artikel leggen we uit welke voorzorgsmaatregelen er zijn zodat iedereen kan genieten van deze producten.

Aanvaardbare dagelijkse inname (ADI)

Stoffen die niet van nature in voeding voorkomen, zoals toevoegingsmiddelen en bestanddelen die worden gebruikt in diergeneesmiddelen, hebben een aanvaardbare dagelijkse inname (ADI = Acceptable Daily Intake). Dit is de maximale hoeveelheid van een stof die je levenslang dagelijks binnen kunt krijgen zonder negatieve effecten op je gezondheid. Deze ADI wordt alleen bepaald voor stoffen waarvan is bewezen dat ze niet kankerverwekkend zijn. Stoffen die wel kankerverwekkende effecten kunnen hebben, mogen niet worden gebruikt in de voedselketen en krijgen daarom ook geen ADI.

De ADI wordt meestal bepaald door middel van dierproeven. Proefdieren krijgen verschillende doseringen van de stof toegediend om de hoogste concentratie te bepalen waarbij geen negatieve effecten te zien zijn (NOAEL: No Observed Adverse Effect Level). Als er meerdere NOAEL bepalingen zijn gedaan voor dezelfde stof, wordt altijd gewerkt met de laagste NOAEL, tenzij kan worden onderbouwd waarom gebruik van een andere NOAEL is aangewezen.

De NOAEL wordt echter niet zomaar overgenomen als ADI. Hiervoor worden twee onzekerheidsfactoren ingebouwd. De eerste om te compenseren voor eventuele verschillen tussen mensen en proefdieren. De tweede is bedoeld om te compenseren voor het feit dat sommige stoffen gevaarlijker zijn voor specifieke risicogroepen zoals ouderen, zwangeren, baby’s en kinderen.

Vaak worden onzekerheidsfactoren gebruikt van 10 en wordt de NOAEL dus vermenigvuldigd met 100 (NOAEL x 10 x 10). Bij bepaalde risicofactoren wordt een hogere onzekerheidsfactor (bijv. 1000) gehanteerd.

Maximum residu limiet (MRL)

De MRL staat voor Maximum Residue Limit. De MRL is van belang voor de voedselveiligheid, omdat levensmiddelen van dierlijke afkomst geen residuen mogen bevatten die hoger zijn dan de MRL.

Een MRL is specifiek voor één werkzame stof en moet worden bepaald voor alle farmacologisch werkzame stoffen in diergeneesmiddelen en biociden die gebruikt worden bij voedselproducerende dieren.

Bij het bepalen van de MRL wordt de ADI als uitgangswaarde genomen. Deze wordt geëxtrapoleerd aan de hand van de opname van verschillende voedingsmiddelen volgens een standaard voedselpakket. Hierbij wordt ervanuit gegaan dat een gemiddelde persoon de hoeveelheden voedsel consumeert zoals in onderstaande tabel zijn weergegeven.

Tabel 1 Standaard voedselpakket voor berekening MRL

Zoogdieren Spier 300 gram
Vet 50 gram
Lever 100 gram
Nier 100 gram
Pluimvee Spier 300 gram
Vet & huid 90 gram
Lever 100 gram
Nier 100 gram
Vis Spier & huid 300 gram
Melk 1500 gram
Eieren 100 gram
Honing 20 gram

De MRL moet zo worden vastgesteld dat de blootstelling aan de consument onder de ADI ligt. Daarbij wordt rekening gehouden met een levenslange dagelijkse blootstelling en andere manieren waarop de consument aan de stof kan worden blootgesteld. Als een stof bijvoorbeeld zowel in diergeneesmiddelen als in gewasbescherming wordt gebruikt, mag slechts 45% van de ADI worden aangewend bij de bepaling van de MRL van deze stof voor diergeneeskundig gebruik.

Een overzicht van de vastgestelde MRL’s is te vinden in tabel 1 van de bijlage bij Verordening (EU) 37/2010.

Risicobeoordeling

De Europese Commissie keurt een aanvraag voor vaststelling van een MRL en de hoogte daarvan goed op basis van een wetenschappelijke risicobeoordeling door de CVMP (Committee for Medicinal Products for Veterinary Use, European Medicines Agency).

Er wordt onder andere gekeken naar de resultaten die zijn verkregen bij studies voor het bepalen van de ADI en het onderzoek naar residuen. Het risico op toxicologische, farmacologische en microbiologische effecten op de mens wordt hierbij in beschouwing genomen. Daarnaast wordt ook gekeken naar de farmacologische eigenschappen van de stof bij de relevante diersoorten. Bij stoffen die worden ingezet bij voedselproducerende dieren wordt ook altijd onderzoek gedaan naar langdurige blootstelling, mogelijke effecten op de vruchtbaarheid bij meerdere generaties en effecten op drachtige dieren, het embryo of de foetus.

Eén van de dingen die bijvoorbeeld worden onderzocht is het effect van een stof op de humane darmflora. Er wordt beoordeeld of de kolonisatiebarrière verstoord zou kunnen worden. Dit is de barrière die wordt gevormd door de normale darmflora in de darmen. Deze beperkt de invasie van exogene micro-organismen en overgroei van mogelijk pathogene micro-organismen. Ook wordt gekeken of er mogelijk een toename kan zijn van resistente bacteriën.

Naast de eigenschappen van de stoffen en de residuen, wordt er ook gekeken naar de situatie rondom het beoogde gebruik van de stof. Dit gebeurt middels een aanbeveling inzake risicomanagement, die onder andere de volgende factoren bevat:

  • de beschikbaarheid van alternatieve stoffen voor de behandeling van de betrokken diersoorten;
  • de noodzakelijkheid van de stof om onnodig dierenleed te voorkomen;
  • gevolgen voor de gezondheid van de personen die de dieren behandelen.

Geen MRL nodig

Is een MRL altijd nodig? Nee, er zijn uitzonderingen.

In sommige gevallen wordt besloten dat residuen in levensmiddelen geen gevaar vormen voor de consument en dat om deze reden een MRL niet nodig is. Een voorbeeld hiervan is het gebruik van vitamines waarvan bekend is dat ze geen negatieve gevolgen hebben, en die wel essentieel zijn voor mens en dier (bijv. biotine of foliumzuur).

Ook voor stoffen die farmacologisch niet actief zijn, maar alleen worden toegevoegd als hulpstof of conserveermiddel, en die veilig zijn bevonden, is niet altijd een MRL nodig. Deze stoffen vallen dan buiten de scope van de Europese MRL-verordening.

Stoffen die niet zijn toegelaten

In een ander uiterst geval wordt geconcludeerd dat de aanwezigheid van een stof in levensmiddelen onwenselijk is, ook als dit in zeer lage concentraties is. Deze conclusie kan men bijvoorbeeld trekken als de aanwezigheid van zelfs lage concentraties een risico vormt voor de gezondheid van de mens. Er wordt dan geen MRL bepaald voor de stof. Ook als er geen definitieve conclusie getrokken kan worden over de gevolgen voor de gezondheid van de mens, wordt er geen MRL vastgesteld. De stof wordt dan verboden voor gebruik bij voedselproducerende dieren. Een voorbeeld van een verboden stof is chlooramfenicol. Deze stof is verboden in verband met het risico op genotoxiciteit. Dit betekent dat chlooramfenicol mogelijk de genetische informatie in de cellen (het DNA) kan beschadigen, wat kan leiden tot mutaties en vervolgens mogelijk tot het optreden van kanker.

Wachttermijn

Tot slot wordt de MRL vertaald naar de wachttermijn. Dit is de minimum tijd die moet verstrijken tussen de laatste toediening van het diergeneesmiddel onder de normale gebruiksvoorwaarden en de productie van levensmiddelen die van dit dier afkomstig zijn. Het respecteren van deze wachttermijn heeft als doel ervoor te zorgen dat er geen residuen in dierlijke producten komen in concentraties boven de MRL.
De wachttermijn wordt altijd vermeld op de samenvatting van de productkenmerken (SPC) en op de bijsluiter en/of verpakking van het product, zodat deze informatie eenvoudig te vinden is.

Diergeneesmiddelen voor voedselproducerende dieren kunnen pas geregistreerd worden als er een ADI en MRL is vastgesteld en wordt aangetoond dat de aangegeven wachttermijn toereikend is om MRL overschrijdingen in dierlijke producten te voorkomen. Dit wordt bewezen door residustudies waarbij op verschillende tijdstippen na de laatste toediening het gehalte aan residuen in weefsels en andere dierlijke producten van gezonde proefdieren wordt bepaald. Dit onderzoek wordt altijd uitgevoerd op de diersoort waarvoor het product geregistreerd zal worden.

Diergeneesmiddelen mogen alleen bij voedselproducerende dieren worden ingezet mits ze zijn geregistreerd voor de betreffende diersoort, en dus met een wachttermijn voor de diersoort waarvoor ze worden gebruikt.

Alleen om dieren onaanvaardbaar lijden te besparen, kan een product worden ingezet dat niet is geregistreerd voor de betreffende diersoort en indicatie (cascaderegeling). Voorwaarde bij voedselproducerende dieren is wel dat er een MRL moet zijn vastgesteld voor deze of een andere diersoort, of dat er is vastgesteld dat er geen MRL nodig is voor deze stof. En natuurlijk zijn er regels om een minimale wachttermijn te bepalen voor de diersoort waarbij het product wordt ingezet.

Meer over de huidige cascaderegeling is op onze website te lezen is.

Monitoring

Alle bovengenoemde onderzoeken worden gedaan voordat een diergeneesmiddel wordt geregistreerd. Maar houdt het hierbij dan op? Nee! Ook na de goedkeuring van de registratie van het diergeneesmiddel worden er verschillende stappen genomen om de voedselveiligheid te waarborgen.

  • De veehouder moet in een register bijhouden welke diergeneesmiddelen aan de dieren zijn toegediend. Deze gegevens worden doorgegeven bij het slachten van de dieren, zodat gecontroleerd kan worden of de wachttermijn in acht is genomen.
  • De controlerende instantie controleert steekproefsgewijs of er residuen in dierlijke producten voorkomen. In Nederland is dat de Nederlandse Voedsel en Warenautoriteit (NVWA) Dit wordt gedaan in het kader van het Nationaal Plan Residuen (NPR), dat is gebaseerd op Europese regelgeving. In Nederland worden daarbij nauwelijks overschrijdingen gevonden.
    Het EFSA (European Food Safety Authority) rapporteert jaarlijks een samenvatting van deze monitoring in de hele EU. In 2016 zijn er 369.262 monsters onderzocht op verboden en toegestane stoffen. 0.31% van deze monsters voldeed niet aan de regelgeving. Dit komt overeen met de resultaten van de jaren daarvoor (0,25 – 0,37% in de afgelopen 10 jaar). Er wordt gekeken naar een breed scala aan stoffen: niet alleen antimicrobiële of antiparasitaire producten, maar ook mineralen zoals koper worden meegenomen. Het aantal afwijkingen per productgroep wordt weergegeven in de tabel.

Hierbij moet in beschouwing worden genomen dat de monitoring is gericht op het opsporen van afwijkingen en de monsters zo worden geselecteerd dat voornamelijk de producten met een hoog risico worden onderzocht. Uit een willekeurige steekproef zou mogelijk een lager percentage afwijkingen naar voren komen.

  • Indien er na inachtneming van de wachttermijn een residu wordt gevonden in een concentratie hoger dan de MRL, moet dit in het kader van farmacovigilantie gemeld worden aan het Bureau Diergeneesmiddelen en/of de registratiehouder. Op basis van deze meldingen wordt beoordeeld of de geadviseerde wachttermijn (nog) volstaat.
    Als blijkt dat de aangegeven wachttermijn mogelijk niet lang genoeg is om te garanderen dat van het behandelde dier afkomstige levensmiddelen geen residuen bevatten die gevaren voor de gezondheid van de consument kunnen opleveren, wordt de registratie geschorst. De aflevering van het diergeneesmiddel wordt verboden en het middel wordt uit de handel genomen.
    De registratie wordt dan pas weer opnieuw goedgekeurd als de registratiehouder kan aantonen dat de wachttermijn (of een gewijzigde wachttermijn) voldoende lang is om de veiligheid van het voedsel te garanderen.

Tabel 2 Uitkomsten monitoring op EU niveau

Categorie dierlijk product Aantal afwijkende monsters (residu > MRL) % van totaal onderzochte monsters
Rundveevlees 331 0,30%
Varkensvlees 295 0,25%
Geiten- en schapenvlees 82 0,49%
Paardenvlees 28 0,84%
Pluimveevlees 48 0,07%
Vlees van gekweekte wilde vogels 17 1,06%
Vlees van wilde vogels 165 6,69%
Konijnenvlees 5 0,28%
Aquacultuur 37 0,55%
Melk 38 0,16%
Eieren 44 0,35%
Honing 41 1,16%

Kwaliteitssystemen

Naast de wettelijke verplichtingen zoals deze hierboven zijn beschreven, zijn er ook nog kwaliteitssystemen die de voedselveiligheid van dierlijke producten borgen.

Deze kwaliteitssystemen stellen vaak extra eisen, die bovenop de wettelijke normen komen.

Hier een greep uit de kwaliteitssystemen die in Nederland van toepassing zijn:

  • IKB kip, IKB varken en IKB kalf voor de productie van vlees;
  • IKB ei voor de productie van eieren;
  • Keten kwaliteit melk (KKM) voor de productie van melk;
  • SKAL voor de productie van biologische dierlijke producten;
  • GMP+ voor de productie van diervoeder. Dit kwaliteitssysteem wordt weer verplicht gesteld door andere kwaliteitssystemen zoals IKB.

Conclusie

Hoewel geconcludeerd kan worden dat het risico op blootstelling aan een residu nooit nul zal zijn, kan ook geconcludeerd worden dat er veel maatregelen worden getroffen om te voorkomen dat residuen kunnen leiden tot gezondheidsproblemen. Kort samengevat zijn dit:

  • altijd gebruik van de laagste NOAEL;
  • onzekerheidsfactoren van 100 tot 1000 bij bepaling van de NOAEL;
  • veiligheidsmarges bij de vertaling van de NOAEL naar de MRL;
  • veiligheidsmarges bij de vertaling van de MRL naar de wachttermijn;
  • controlesystemen door de overheid (nationaal en Europees);
  • kwaliteitssystemen die extra toezicht houden op de voedselveiligheid van dierlijke producten.

Daarnaast is het zo dat een risico op een mogelijk negatief effect uitermate serieus wordt genomen bij de beoordeling van de ADI, NOAEL, MRL en wachttermijn. De voedselveiligheid weegt hierbij altijd het zwaarst.

Bronnen

  1. EFSA Scientific opinion on Chloramphenicol in food and feed.
  2. EFSA Report for 2016 on the results from the monitoring of veterinary medicinal product residues and other substances in live animals and animal products.
  3. EMA Substances considered as not falling within the scope of Regulation (EC) No. 470/2009, with regard to residues of veterinary medicinal products in foodstuffs of animal origin.
  4. EMA Veterinary regulatory – Maximum residu limits (MRL).
  5. Richtlijn 2001/82/EG van het Europees Parlement en de Raad van 6 november 2001 tot vaststelling van een communautair wetboek betreffende geneesmiddelen voor diergeneeskundig gebruik.
  6. Van der Merwe, D., Beusekom, C., van den Berg, M., Gehring, R. (2019) Fipronil en de volksgezondheid – Een toxicologisch perspectief. Tijdschrift voor Diergeneeskunde, Jan 2019.
  7. Verordening (EU) 2018/782 van de commissie van 29 mei 2018 tot vaststelling van de methodologische beginselen voor de risicobeoordeling en aanbevelingen inzake risicomanagement als bedoeld in Verordening (EG) nr. 470/2009.
  8. Verordening (EU) 2019/6 van het Europees Parlement en de Raad van 11 december 2018 betreffende diergeneesmiddelen.
  9. Verordening (EU) 37/2010 van de Commissie van 22 december 2009 betreffende farmacologisch werkzame stoffen en de indeling daarvan op basis van maximumwaarden voor residuen in levensmiddelen van dierlijke oorsprong (met in tabel 1 van de bijlage een lijst met vastgestelde MRL’s).
  10. Verordening (EU) 470/2009 van het Europees Parlement en de Raad van 6 mei 2009 tot vaststelling van communautaire procedures voor het vaststellen van grenswaarden voor residuen van farmacologisch werkzame stoffen in levensmiddelen van dierlijke oorsprong (Bepaling van de MRL).
  11. Voedingscentrum – Aanvaardbare dagelijkse inname (ADI).
  12. Voedingscentrum – Antibiotica.

Samenvatting symposium Bedrijfsspecifieke vaccins België

In navolging op de symposia over immunologie en bedrijfsspecifieke vaccins die Dopharma organiseerde in Nederland, volgde op 27 september jl. het symposium in België.

Een samenvatting hiervan is gepubliceerd in Dierenartsenwereld. Hier kunt u het artikel lezen.